

Texas Tech University Multidisciplinary Research in Transportation

Implementation of LRFD Geotechnical Design for Deep Foundations Using Texas Cone Penetrometer (TCP) Test

Hoyoung Seo, Rozbeh B. Moghaddam, James G. Surles, William D. Lawson

Performed in Cooperation with the Texas Department of Transportation and the Federal Highway Administration

Research Project 5-6788-01 Research Report No. 5-6788-01-1 http://www.techmrt.ttu.edu/reports.php

Technical Report Documentation Page

1. Report No.: EHWA/TX-16/5-6788-01-1	2. Government Accession	No.: 3. Recipient's Catalog No.:
4. Title and Subtitle: Implementation of LRFD Geo Using Texas Cone Penetrome	I otechnical Design for Deep F eter (TCP) Test	Soundations5. Report Date: September 20156. Performing Organization Code:
 7. Author(s): Hoyoung Seo, 1 William D. Lawson 9. Performing Organization I Texas Tech Center for Mu Texas Tech University Por 41023 	Rozbeh B. Moghaddam, Jam Name and Address: Iltidisciplinary Research in T	es G. Surles, 8. Performing Organization Report No. 5-6788-01-1 10. Work Unit No. (TRAIS): 11. Contract or Grant No. :
Lubbock, Texas 79409-10	23	Project 5-6788-01
12. Sponsoring Agency Name Texas Department of Tran Division of Research and 125 E.11 th Street Austin, TX 78701-2483	e and Address sportation Technology Implementation	13. Type of Report and Period Cover: Technical Report June 2015 – August 2015
		14. Sponsoring Agency Code:
15. Supplementary Notes: Project performed in coop Administration. 16. Abstract: This study provides resistance Design (LRFD) for bridge fo to determine resistance factor Foundation Design Using Te LRFD reliability analyses w capacities. The resistance fa respectively, for total capace resistance factors obtained us capacity of drilled shafts in s hammer efficiency. Based o recommended that resistance 0.30 with β of 2.33 and 3.0, r in soils, respectively. It is con projects, it is recommend co accordance with AASHTO po	eration with the Texas Depar e factors (ϕ) for design of de undations using Texas Cone ors using Davisson's criteri xas Cone Penetrometer (TCI ere performed using 5%, ar actors obtained using Davis ity of driven piles in soils sing Davisson, 5%, and 10% oils with β of 3.0. These resons n the size and scope of the factors from Davisson and the respectively) and drilled shaft nsidered that these values are consideration of determining policy which will yield higher	tment of Transportation and the Federal Highway ep foundations to implement Load and Resistance Factor Penetrometer (TCP) Test data. Initial efforts were made on in Research Project 0-6788: Reliability Based Deep P) Test, completed on 8/31/2014. In this study, additional d 10% relative settlement criteria to determine ultimate son, 5%, and 10% criteria were 0.30, 0.32, and 0.31, with target reliability index (β) of 3.0. Similarly, the criteria were 0.38, 0.40, and 0.39, respectively, for total istance factors reflect TCP blow counts not corrected for dataset, literature review, and statistical analyses, it is 5% criteria be used for driven piles in soils ($\phi = 0.44$ and ts ($\phi = 0.54$ and 0.40 with β of 2.33 and 3.0, respectively) suitable for implementation for small projects. For large ultimate capacity from static or dynamic load tests in resistance factors. 18. Distribution Statement: No restrictions. This
17. Key Words		18. Distribution Statement: No restrictions. This document is available to the public through the National Technical Information Service

		Springfield, V	Virginia 22161, www	v.ntis.gov
19. Security Classif. (of this report)	20. Security Class	sif. (of this page)	21. No. of Pages	22. Price
	Oliciassified			

Form DOT F 1700.7 (8-72)

Implementation of LRFD Geotechnical Design for Deep Foundations Using Texas Cone Penetrometer (TCP) Test

by

Hoyoung Seo Rozbeh B. Moghaddam James G. Surles William D. Lawson

Implementation Report Number 5-6788-01-1 Implementation Project Number 5-6788-01

Performed in cooperation with the Texas Department of Transportation and the Federal Highway Administration

Center for Multidisciplinary Research in Transportation Texas Tech University

September 2016

AUTHOR'S DISCLAIMER

The contents of this report reflect the views of the authors who are responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official view of policies of the Texas Department of Transportation or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

PATENT DISCLAIMER

There was no invention or discovery conceived or first actually reduced to practice in the course of or under this contract, including any art, method, process, machine, manufacture, design or composition of matter, or any new useful improvement thereof, or any variety of plant which is or may be patentable under the patent laws of the United States of America or any foreign country.

ENGINEERING DISCLAIMER

Not intended for construction, bidding, or permit purposes.

TRADE NAMES AND MANUFACTURERS' NAMES

The United States Government and the State of Texas do not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

TABLE OF CONTENTS

i
ii
iv
v
ix
xiii
2

1. REVIEW OF ULTIMATE CAPACITY CRITERIA IMPLEMENTED BY OTHER STATE DOTs

1.1 Research Studies Published by other DOTs Which Have Explored the	
Implementation of LRFD for Deep Foundations	1
1.2 Ultimate Bearing Capacity Methods Used by Other DOTs	8

2. RELIABILITY ANALYSES AND DEVELOP RESISTANCE FACTOR FOR TOTAL CAPACITY OF DRIVEN PILES IN SOILS

2.1 Determination of Ultimate Capacities Based on 5% and 10% Relative	
Settlement Criteria	10
2.2 Determination of Statistical Distribution of Bias of the Resistance and Develop	oment of
Resistance Factors	13

3. RELIABILITY ANALYSES AND DEVELOP RESISTANCE FACTOR FOR TOTAL CAPACITY OF DRILLED SHAFTS IN SOILS

3.1 Determination of Ultimate Capacities Based on 5% and 10% Relative	
Settlement	15
3.2 Determination of Statistical Distribution of Bias of the Resistance and Develop	pment
Of Resistance Factors	18

4. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

REFERENCES	24
4.2 Resistance Factors for Total Capacity of Drilled Shafts in Soils4.3 Resistance Factors for Shaft and Base Capacities of Drilled Shafts in Soils	21 22
4.1 Resistance Factors for Driven Piles in Soils	20

LIST OF FIGURES

1.	Status of LRFD Implementation of State DOTs as of 2008	. 2
2.	Status of LRFD Implementation Based on Review of Research Reports, Bridge	
	Design Manuals, Geotechnical Manuals, and Standard Specifications Published by	
	Each DOT	. 7
3.	Ultimate Capacity Criteria Implemented by State DOTs for (a) Driven Piles and (b)	
	Drilled Shafts	. 9

LIST OF TABLES

1.	Ultimate Capacity Criteria and LRFD Implementation Status Reports by	
	State DOTs	3
2.	Summary of Other DOTs Datasets Used for LRFD Reliability Analyses	3
3.	Summary Table for Driven Piles 1	2
4.	Summary Statistics for Biases of Resistances for Driven Piles 1	3
5.	Summary Statistics for Biases of Loads Used in this Study 1	4
6.	Resistance Factors for Total Capacity of Driven Piles in Soils ($\beta = 2.33$)	5
7.	Resistance Factors for Total Capacity of Driven Piles in Soils ($\beta = 3.00$)	5
8.	Summary Table for Drilled Shafts 1	17
9.	Summary Statistics for Biases of Resistances for Drilled Shafts in Soils 1	8
10.	Resistance Factors for Total Capacity of Drilled Shafts in Soils ($\beta = 2.33$)	8
11.	Resistance Factors for Total Capacity of Drilled Shafts in Soils ($\beta = 3.00$)	9
12.	Resistance Factors for Shaft Capacity of Drilled Shafts in Soils ($\beta = 2.33$)	9
13.	Resistance Factors for Shaft Capacity of Drilled Shafts in Soils ($\beta = 3.00$)	9
14.	Resistance Factors for Base Capacity of Drilled Shafts in Soils ($\beta = 2.33$)	20
15.	Resistance Factors for Base Capacity of Drilled Shafts in Soils ($\beta = 3.00$)	20
16.	Resistance Factors Obtained from Monte Carlo Simulations for Total	
	Capacity of Driven Piles in Soils	21
17.	Resistance Factors Obtained from Monte Carlo Simulations for Total	
	Capacity of Drilled Shafts in Soils	21
18.	Resistance Factors Obtained from Monte Carlo Simulations for Shaft	
	Capacity of Drilled Shafts in Soils 2	22
19.	Resistance Factors Obtained from Monte Carlo Simulations for Base	
	Capacity of Drilled Shafts in Soils 2	22

REVIEW OF ULTIMATE CAPACITY CRITERIA IMPLEMENTED

BY OTHER STATE DOTs

This report presents a summary of the work completed under the TxDOT Implementation Project 5-6788-01: Implementation of LRFD Geotechnical Design for Deep Foundations Using Texas Cone penetrometer (TCP) Test and final recommendations.

As part of this literature review effort, a large number of research reports, bridge design manuals, geotechnical manuals, and standard specifications published by each state Department of Transportation (DOTs) were collected and reviewed in detail. These publications discuss topics related to the development and implementation of the Load and Resistance Factor Design (LRFD) for deep foundations and the ultimate capacity criteria to determine a foundation's load carrying capacity.

1.1 Research Studies Published by Other DOTs Which Have Explored the Implementation of LRFD for Deep Foundations

Ever since the Federal Highway Administration (FHWA) mandated the use of the load and resistance factor design (LRFD) approach for all new bridges initiated after September 2007 (Densemore 2000), most DOTs have been working on implementation of LRFD for design of bridge foundations. AbdelSalam et al. (2010) conducted a nationwide survey of more than 30 DOTs on the bridge deep foundation practices in 2008. According to AbdelSalam et al. (2010), as of 2008 24 states had implemented the LRFD method to a certain extent, five states were still using the allowable stress design (ASD) method, and 21 states were in the process of transitioning to the LRFD method. Figure 1 shows the status of LRFD implementation for bridge foundation design at the time of the survey.

Figure 1. Status of LRFD Implementation of State DOTs as of 2008 (AbdelSalam et al. 2010)

Although the survey completed by AbdelSalam et al. (2010) indicated that 24 states had implemented the LRFD method, not all research reports were available at the time of preparation of this report. In fact, it appears that many DOTs did not perform any research study to calibrate region-specific resistance factors against target reliability index, but rather obtained resistance factors by fitting to the ASD factor of safety based on past local experience, or simply recommended using the resistance factors suggested in AASHTO LRFD Bridge Design Specifications (AASHTO 2012). On the other hand, some of the states identified as transitioning from ASD to LRFD in the survey by AbdelSalam et al. (2010) now published preliminary reports presenting the implementation of the LRFD method for their corresponding states. The results of review of research reports, bridge design manuals, geotechnical manuals, and standard specifications published by each state DOT are summarized in Table 1.

	References	Ashour et al. (2012); ALDOT (2015)		ADOT (2011)	AHTD (2014); Coffman (2015)	Caltrans DRISI (2014)	Chang et al. (2011)	ConnDOT (2005)	DeIDOT (2005)	Kuo et al. (2002); FDOT (2015)	GDOT (2015)	HDOT (2005)	ITD (2008)
	Comments	Resistance factors for driven piles were obtained by fitting to the ASD factor of safety through a research project, but current ALDOT design manual recommends AASHTO LRFD resistance factors.	No documents available		Research project for LRFD calibration for drilled shaft foundations is underway by University of Arkansas.	Resistance factors obtained by fitting to the ASD factor of safety have been used for a transition period. Research project to perform a California specific calibration of resistance factors is underway by University of Texas, Arlington.	Strategic plan to implement LRFD was released by CDOT in 2006, but no research report on resistance factor calibration is available.	Uses AASHTO LRFD resistance factors for driven piles. Resistance factors for drilled shafts are not available in the Geotechnical Engineering Manual.			Resistance factors for structural capacity of H and Prestressed Concrete (PSC) piles are available, but not for geotechnical capacity.	Resistance factors for deep foundations are not available in Standard Specifications, but Davisson's criterion to determine ultimate capacity of driven piles is recommended.	
acity Criteria	Drilled Shaft									5%			
Ultimate Cap	Driven Pile									Davisson		Davisson	
Resistance factor	obtained from reliability analysis									×			
Resistance factor obtained by fitting to	ASD factor of safety based on past local experience	×				×							
Refers to	LRFD manual	×		×				×	×				×
Implemented LRFD	according to AbdelSalam et al. (2010)		×		×		×	×		×		×	×
	State	Alabama	Alaska	Arizona	Arkansas	California	Colorado	Connecticut	Delaware	Florida	Georgia	Hawaii	Idaho
	No.	-	2	с	4	2	9	7	80	6	10	5	12

Table 1. Summary Table Presenting Findings about Ultimate Capacity Criteria LRFD Implementation Status Reported by State DOTs

Research Project 5-6788-01

Page 3

		Implemented LRFD	Refers to	Resistance factor obtained by fitting to	Resistance factor	Ultimate Cap	acity Criteria		
No.	State	according to AbdelSalam et al. (2010)	LRFD manual	ASD factor of safety based on past local experience	obtained from reliability analysis	Driven Pile	Drilled Shaft	Comments	References
13	Illinois	×	×		×			IDOT used WSDOT driving formula for calibration of resistance factor for driven piles. For drilled shafts, IDOT refers to AASHTO LRFD resistance factors.	IDOT (2012)
14	Indiana				×	10%	10%		Salgado et al. (2011)
15	lowa				×	Davisson		Resistance factors were obtained only for driven piles.	AbdelSalam et al. (2012)
16	Kansas				×		5%	Resistance factors were obtained only for drilled shafts.	Yang et al. (2010)
17	Kentucky		×						KYTC (2014)
18	Louisiana	×			×	Davisson	5%		Abu-Farsakh et al. (2009); Abu-Farsakh et al. (2010)
19	Maine	×	×						Maine DOT (2014)
20	Maryland							No documents available	
21	Massachusetts		×						MassDOT (2013)
22	Michigan		×						MIDOT (2012)
23	Minnesota	×			×	Davisson			Paikowsky et al. (2014)
24	Mississippi		×						MDOT (2010)
25	Missouri	×			×	Davisson			Loehr et al. (2011); Luna (2014)
26	Montana		×						MDT (2008)
27	Nebraska	×		×					Nowak et al. (2007)
28	Nevada		×						NevadaDOT (2008)

Research Project 5-6788-01

Page 4

		Implemented LRFD	Refers to	Resistance factor obtained by fitting to	Resistance factor	Ultimate Cap	oacity Criteria		
No	State	according to AbdelSalam et al. (2010)	LRFD manual	ASD factor of safety based on past local experience	obtained from reliability analysis	Driven Pile	Drilled Shaft	Comments	References
29	New Hampshire	×				Davisson		New Bridge Design Manual is to be released. The NHDOT Spec Book does not provide resistance factors but specify Davisson's criterion to be used to determine ultimate capacity.	NHDOT (2010)
30	New Jersey	×	×						NJDOT (2009)
31	New Mexico				×				Ng and Fazia (2012)
32	New York		×						NYSDOT (2014)
33	North Carolina				×	Davisson		Resistance factors were obtained only for driven piles.	Rahman et al. (2002)
34	North Dakota		×						NDDOT (2013)
35	Ohio		×			Davisson	Davisson	Construction Manual specifies Davisson's criterion to be used to determine ultimate capacity.	OHDOT (2013); OHDOT (2015)
36	Oklahoma	×	×			Davisson		Standard and Specifications Book specifies Davisson's criterion to be used to determine ultimate capacity	ОКDOT (2009)
37	Oregon	×			×	Davisson		Bridge Design and Drafting Manual requires Foundation Designer to provide the resistance factor in the Foundation Report.	Smith et al. (2011); ODOT (2015)
38	Pennsylvania	×		×				Design Manual generally refers to AASHTO LRFD manual but recommends higher resistance factors than AASHTO values.	PennDOT (2015)
39	Rhode Island	×	×						RIDOT (2007)
40	South Carolina	×		×				Geotechnical Manual generally refers to AASHTO LRFD manual but recommends slightly different resistance factors.	SCDOT (2010)
41	South Dakota							Standards and Manuals do not mention LRFD design of deep foundations. Research report on implementation plan of LRFD was published in 2008.	Foster and Huft (2008); SDDOT (2014); SDDOT (2015)
42	Tennessee	×						No documents available	
43	Texas								

Research Project 5-6788-01

Page 5

References	UDOT (2011); UDOT (2015)	VTrans (2010)	VDOT (2010)	Allen (2005); WSDOT (2015)	WVDOH (2014)	WisDOT (2015) Bridge Manual	WYDOT (2013)
Comments			Geotechnical manual for LRFD design of deep foundation is under development	Resistance factors for driven piles using WSDOT driving formula or Wave Equation analysis were obtained from reliability analyses. All other resistance factors are referred to AASHTO LRFD manual.			Bridge design manual for LRFD design of deep foundation is under development.
Drilled Shaft							
Driven Pile							
obtained from reliability analysis				×			
ASD factor of safety based on past local experience							
LRFD manual	×	×		×	×	×	
according to AbdelSalam et al. (2010)	×			×			×
State	Utah	Vermont	Virginia	Washington	West Virginia	Wisconsin	Wyoming
No.	44	45	46	47	48	49	50
	No. State according to LRFD ASD factor of safety obtained from Comments Comments References AbdelSalam manual based on past local reliability Driven Pile Drilled et al. (2010) experience analysis	No. State according to TEPD ASD factor of safety obtained from References References AbdelSalam Manual AbdelSalam manual etal. (2010) Nanual etal. (2011) Not (2011) UDOT (2011) 44 Utah x x UDOT (2011) UDOT (2015) UDOT (2015)	No. State according to AbdelSalam TEFD based on past local ASD factor of safety reliability obtained from Brited Drilled Comments References 44 Utah x x x UDDT (2011); UDDT (2015); 45 Vermont x x v VTans (2010) VTans (2010);	No. State according to according to et al. (2010) ASD factor of safety based on past local et al. (2010) Obtained from manual experience Drilled analysis Drilled Shaft Dundt 44 Utah x x v UDOT (2011); UDOT (2015) UDOT (2015); UDOT (2015) 45 Vermont x x v vrana (2010) vrana (2010) 46 Virginia vrana (or development) vor (2010) vor (2010) vrana (2010)	No. State according to based on past local Sability reliability analysis Drilled Shaft Drilled Shaft Comments References 44 Ulah x x x UDOT (2011); UDOT (2015) UDOT (2015); UDOT (2015) Varians (2010); UDOT (2015) 45 Vermont x x x Varians (2010); UDOT (2015) Varians (2010); UDOT (2015) 46 Virginia x x x Participation is under development. VDOT (2010); Varians (2010) 47 Washington x x x X NDOT (2015); Varians (2016); Varians (2010); Varians (2010);	No.Stateaccording to based on past local tablels lam manualASD factor of safety based on past local analysisDitledDitledDitledCommentsReferences44UtahxxxxanalysisanalysisbitledDitled2010;UDOT (2011);45VermontxxxxxxUDOT (2013);UDOT (2014);46VirginiaxxxxCentral famility analysisCentral famility analysis were foundation is under developmentVDOT (2010);47WashingtonxxxxXNort (2010);VDOT (2010);48West VirginiaxxxNDOT (2010);NDOT (2010);49West VirginiaxxXNDOT (2010);NDOT (2015);40West VirginiaxxNDOT (2010);NDOT (2015);41West VirginiaxxNDOT (2010);NDOT (2015);42Mest VirginiaxxNDOT (2016);NDOT (2015);43West VirginiaxXNDOT (2016);NDOT (2015);44West VirginiaxXNDOT (2016);NDOT (2016);44West VirginiaXXNDOT (2016);NDOT (2016);45Mest VirginiaXXNDOT (2016);NDOT (2016);46Mest VirginiaXXNDD (2016);NDOT (2016);	No. State according to abdedisation a block sing based on past local ASD factor of safety based on past local Diven Pile Divine Shaft Diven Pile Diven Pile

Research Project 5-6788-01

According to our review, 12 state DOTs performed research projects in an effort to calibrate resistance factors against target reliability index for driven piles, drilled shafts or both. Five state DOTs obtained resistance factors by fitting to the ASD factor of safety based on local experience. The remaining DOTs either refer to AASHTO LRFD manual for resistance factors or do not specify resistance factors in their design manuals. Fig. 2 shows the LRFD implementation status of 49 states (Texas not included) based on our review of research reports, bridge design manuals, geotechnical manuals, and standard specifications published by each DOT. It should be noted that among the 12 DOTs that performed research projects to calibrate resistance factors against target reliability index, only four DOTs (Florida, Indiana, Louisiana, and Missouri) performed calibration for both driven piles and drilled shafts. The remaining eight DOTs performed calibration either for driven piles or for drilled shafts only. Further details are given in Table 2.

Fig. 2 Status of LRFD Implementation Based on Review of Research Reports, Bridge Design Manuals, Geotechnical Manuals, and Standard Specifications Published by Each DOT

	Reliability	y Analysis	Number o	of Datasets
State	Driven Piles	Drilled Shafts	Driven Piles	Drilled Shafts
Florida	x	х	NS	273
Illinois	х		NS	NA
Indiana	х	х	NA*	NA*
Iowa	х		264**	NA
Kansas		х	NA	26
Louisiana	x	х	53**	26
Minnesota	х		270**	NA
Missouri	х	х	NS	31
New Mexico		х	NA	24
North Carolina	х		175**	NA
Oregon	x		322**	NA
Washington	х		141**	NA
Texas	x	X	30	40 (29 in soils and 11 in IGMs)

Table 2. Summary of Other DOTs' Datasets Used for LRFD Reliability Analyses

* Research framework is different from conventional resistance calibration process.

** Dataset includes dynamic load tests using PDA.

1.2 Ultimate Bearing Capacity Methods Used by Other DOTs

In order to investigate which ultimate capacity criterion is employed by other DOTs to determine measured ultimate bearing capacity for deep foundations, a review of published research reports and design manuals corresponding to state DOTs was completed. A summary of our review on the ultimate capacity criteria is presented in Table 1.

As shown in Fig. 3(a), for driven piles, 37 states out of 49 states (76%) do not specify which criterion is used to determine the ultimate capacity. Among the 12 states which specified the ultimate capacity criterion, 11 states use Davisson's criterion as an ultimate capacity criterion (seven states explicitly used Davisson's criterion for calibration of resistance factors and four states specify Davisson's criterion to be used to determine ultimate capacity of driven piles in Bridge Design Manuals or Geotechnical Manuals, even though calibrations of resistance factors were not performed). Finally, only one state (Indiana) used the 10% relative settlement criterion as an ultimate capacity criterion (*i.e.*, defining the load at pile head settlement corresponding to 10% of pile diameter as an ultimate capacity) for calibration of resistance factors for driven piles.

In case of drilled shafts, 44 states out of 49 states (90%) do not specify which criterion is used to determine the ultimate capacity, as shown in Fig. 3(b). Three states used the 5% relative settlement criterion as an ultimate capacity criterion (*i.e.*, defining the load at pile head settlement corresponding to 5% of pile diameter as an ultimate capacity) for calibration of resistance factors for drilled shafts. Again, only one state (Indiana) used the ultimate capacity based on 10% criterion for calibration of resistance factors for drilled shafts.

(a)

Fig. 3 Ultimate Capacity Criteria Implemented by State DOTs for (a) Driven Piles and (b) Drilled Shafts

2. Reliability Analyses and Development of Resistance Factor for Total Capacity of Driven Piles in Soils

2.1 Determination of Ultimate Capacities Based on 5% and 10% Relative Settlement Criteria

The dataset for the previous Research Project 0-6788 consisted of 33 driven piles. All 33 driven piles are precast square concrete piles with widths ranging from 14 to 20 inches and penetration depths ranging from 15 to 83.5 ft. Among the 33 load tests, 28 of them were conventional static top-down load tests and the remaining five tests were statnamic load tests. None of the 33 load tests were instrumented with strain gages; therefore, resistance factors were determined only for total capacity.

Among the 33 load tests, 22, 12, and one were loaded beyond the Davisson's criterion, 5% relative settlement criterion, and 10% relative settlement criterion, respectively. Among the 11 tests which did not reach the Davisson's offset line, eight reached at least an elastic line and were included in our dataset. However, the remaining three tests which did not reach even the elastic line were deemed non-usable and therefore excluded from the dataset for the subsequent reliability analyses in the previous Research Project 0-6788. Consequently, 30 tests on driven piles were included in the final load-test dataset. The same 30 load tests were used in this Implementation Project 5-6788-01.

For the 29 load tests that did not reach a settlement of 10% of diameter at the pile head, the load-settlement curves were extrapolated up to 10% pile diameter. In doing so, the research team used the weighted hyperbolic fitting technique. In the original Chin's method (Chin 1970), it is assumed that the load-settlement curves of deep foundations are hyperbolic as follows:

$$Q = \frac{w}{C_1 w + C_2} \tag{Eq. 1}$$

where Q = applied load, w = pile head settlement, and $C_1 \& C_2$ = fitting constants. Chin (1970) suggested that C_1 and C_2 be determined by fitting a straight line through load test results in w/Q versus w space. In this fitting process, it is implicitly assumed that each data point carries the same weight. On the other hand, the weighted hyperbolic technique, which was developed in the previous Research Project 0-6788, takes the squared values of each settlement data point as weights to determine the fitting parameters for the hyperbolic curve. Mathematically, the fitting constants C_1 and C_2 are the parameters found using a weighted least-square regression method and expressed as follows:

$$C_1 = \frac{\left(\sum \frac{w_i^2}{Q_i}\right) - C_2(\sum w_i)}{\sum w_i^2}$$
(Eq. 2a)

$$C_2 = \frac{\left(\Sigma \frac{w_i}{Q_i}\right) \left(\Sigma w_i^2\right) - \left(\Sigma w_i\right) \left(\Sigma \frac{w_i^2}{Q_i}\right)}{n\left(\Sigma w_i^2\right) - \left(\Sigma w_i\right)^2}$$
(Eq. 2b)

where Q_i = each applied load, w_i = each measured settlement, and n = summation of weights. The weighted hyperbolic curve is then constructed using the C_1 and C_2 obtained from Eqs. (2a) and (2b), respectively. In the previous Research Project 0-6788, it was found that the weighted hyperbolic fitting technique yielded slightly less scatter than the original Chin's method, when comparing the Davisson capacity from the extrapolated curve with that from the measured load-settlement curve.

In this Implementation Project 5-6788-01, ultimate capacities based on 5% and 10% relative settlement criteria were determined from the weighted hyperbolic curves using the aforementioned technique. Table 3 presents a summary of the ultimate capacities based on Davisson, 5%, and 10% criteria of driven piles (the three tests disregarded in the subsequent analysis, highlighted with red color and struck-through, were also included in Table 3). It should be noted that the ultimate capacity values in Columns 18 through 20 represent measured capacities based on corresponding ultimate capacity criteria if those criteria were met. Otherwise, these values were obtained from extrapolation using the weighted hyperbolic method.

	osite 4]	8.4	8.4	8.4	8.4	6.4	9.2	9.2	θ	7.8	8.4	6.4	8.4	8.4	8.4	8.4	8.8	8.2	6.6	7.2	6	θ	5.4	θ	6	8.6	8.6	8.6	7.4	8.6	8.4	00	8.8	5.4
Score	d Comp	5	5	5	5	4	5	5	θ	4	5	80	80	00	00	5	5	5	.2	80	5	9	9	θ	5	S	S	5	80	5	5	2	9	80
a Quality	Measure [23]					2				4		2	4	4	4				m	ĉ			2						m				4	-
Data	Predictive [[22]	3.4	3.4	3.4	3.4	4.0	4.2	4.2	8.6	3.4	3.4	3.6	3.6	3.6	3.6	3.4	3.8	3.2	3.4	3.4	4.0	4:E	2.8	3.6	4.0	3.6	3.6	3.6	3.6	3.6	3.4	3.0	4.2	3.6
Predicted Total Capacity (kips)	TCP RAW [21]	194	173	196	363	336	279	304	248	442	235	558	141	106	409	301	198	210	182	605	740	162	289	304	238	275	275	254	275	455	738	521	218	596
Q _{ut} from 10% Criterion ^{a)}	Total (kips) [20]	122	423	310	211	830	498	358		277	353	469	293	428	354	271	337	329	380	271	400		329		273	497	424	420	860	2087	838	587	273	890
Q _{ut} from 5% Criterion ^{a)}	Total (kips) [19]	119	397	292	204	733	425	334		261	326	421	274	403	324	258	317	225	339	265	388		305		265	452	408	391	728	1086	654	571	266	646
Q _{uit} from Davisson's Criterion ^{al}	Total (kips) [18]	112	372	261	195	652	354	307		235	290	371	235	359	293	236	302	130	282	251	353		275		252	387	385	341	600	704	681	488	246	677
	10% [17]																	×																
Criteria	5% [16]			×	×			×					×	×	×	×	×	×										×			×		×	
te Capacity C	Davisson [15]	×	×	×	×		×	×			×		×	×	×	×	×	×			×				×	×	×	×		×	×	×	×	
Ultima	Test Type [14]	tatic Top Down	tatic Top Down	tatic Top Down	tatic Top Down	tatic Top Down	tatic Top Down	tatic Top Down	taticTop-Down	tatic Top Down	tatic Top Down	tatic Top Down	tatic Top Down	tatic Top Down	tatic Top Down	tatic Top Down	tatic Top Down	tatic Top Down	tatic Top Down	tatic Top Down	tatic Top Down	taticTop-Down	tatic Top Down	tatic Top-Down	tatic Top Down	tatnamic	tatnamic	tatnamic	tatnamic	tatnamic	tatic Top Down	tatic Top Down	tatic Top Down	tatic Top Down
Soil Below Base	[13]	Fine 9	Fine	Fine	Coarse	Fine	Coarse	Coarse	Fine	Fine	Fine	Fine	Coarse	Coarse	Fine	Fine	Coarse	Fine	Fine	Fine	Fine	Fine	Coarse	Fine	Fine	Coarse	Coarse	Coarse	Coarse	Fine	Fine	Fine	Coarse	Fine
ft Resistance	Coarse Grained [12]	%0	71%	%0	27%	29%	40%	67%	52%	67%	63%	16%	16%	21%	81%	%0	46%	20%	%0	46%	%0	9%9	32%	6%	%0	68%	68%	86%	68%	56%	73%	34%	88%	45%
Source of Shat	Fine Grained [11]	100%	29%	100%	73%	71%	60%	33%	48%	33%	37%	84%	84%	79%	19%	100%	54%	80%	100%	54%	100%	100%	68%	69%	100%	32%	32%	34%	32%	44%	27%	66%	12%	55%
Soil Conditions	General Stratigraphy [10]	CL/SM	CL/SM/CL/SC	cl/SM/CL	cr/cr/sc/cr	WATER/CL/SP/CH/SM	CL/SC/SM	CL/SC/SM	MH/SC/CL/SP/CL	CL/SW/CL/SP	MH/SP/SM/CL/SP	CL/SP/CL/SP	cL/SC/CH	SM/SP/CL	SP/CL/SP/CL/SP	CH	CH/SM/CL	CH/SM/CH	CL/SM	SM/CL/SM	сı	MH/CL/CL/SP	MH/SM	OH/CF	CL/SM	CH/SM/CH	CH/SM/CH	CH/SM/CH	CH/SM/CH	CH/SM/CH	CH/SC/CH/SP/CH/SP	CH/SP/CH/SP/CH	CH/SM/CH/SM	SM/CH/SP/CH/SP
nsions	ل _ه (ft) [9]	30.0	25.5	22.0	34.5	69.3	35.0	33.0	49.3	42.6	44.0	46.8	16.3	15.0	46.8	30.0	31.0	40.0	31.0	77.0	26.5	33.0	83.5	44.4	25.8	42.0	42.0	40.0	42.0	55.0	72.0	72.0	43.0	80.0
Pile Dime	B (in) [8]	14	14	14	14	20	15	15	16	16	16	16	16	16	16	16	16	16	15	20	14	98 1	18	- 18	14	18	18	18	18	18	20	20	14	14
	Year [7]	1971	1971	1971	1971	1972	1969	1969	1954	1953	1953	1952	1972	1972	1971	1967	1967	1967	1957	1958	1966	1964	1964	1964	1965	2007	2007	2007	2007	2007	1992	1992	2008	2008
	State [6]	Υ	¥	¥	Ύ	¥	¥	¥	¥	¥	¥	¥	¥	Ύ	Ύ	¥	¥	¥	¥	¥	ТX	#	ΤX	¥.	¥	Χ	Χ	Τ	ř	¥	¥	¥	IS LA	IS LA
ta	County [5]	Harris	Harris	Harris	Harris	Cameron	Gonzales	Gonzales	Jefferson	Orange	Orange	Hardin	Cameron	Cameron	Nueces	Cameron	Cameron	Cameron	Cameron	Galveston	Harris	Aransas	Aransas	Aransas	Harris	Chambers	Chambers	Chambers	Chambers	Chambers	Chambers	Chambers	New Orlean	New Orlean
m and Location De	City [4]	Houston	Houston	Houston	Houston	Port Isabel	Gonzales	Gonzales	Port-Arthur	Orange	Orange	Beaumont	Harlingen	Harlingen	4 Corpus Christi	Brownsville	Brownsville	Brownsville	Brownsville	Galveston	Houston	Reckpert	Rockport	Rockport	Houston	Bay Town Area	Bay Town Area	Bay Town Area	Bay Town Area	Bay Town Area	Baytown Area	Baytown Area	New Orleans	New Orleans
Project Identificatio	LoadTestID [3]	Test Pile Bent 3L-4	Test Pile Bent 24R-3	Test Pile Bent 35R-1	Test Pile Bent 36R-2	Pile No. 1 Load No. 1	Bridge "G" Laod Test	Bridge "C" Load Test	Test Pile No. 1	Test Pile No. 2F	Test Pile No. 3B	Test Pile No. 1	Test Pile No. 2	Test Pile No. 3	Intracoastoal Waterway	Test Load Pile No. 1	Test Pile No. 1	Pile Test No. 1	Test Pile No. 4	Test Pile Extra	Bent No. 3 Pile No. 18	Test Pile No. 6	Test Pile No. 1	Test Pile No. 10	Bent 15-L Column C	Bent 2 Pile O	Bent 3 Pile E2	Bent 4 Pile O	Bent 5 Pile E2	Bent 14 Pile E	River Bridge Bent 20	River Bridge Bent 44	Test Pile No. 1	Test Pile No. 3
	aseNo ProjectID 1] [2]	1 27-13-52	2 27-13-52	3 27-13-52	4 27-13-52	5 331-4-15	6 535-5-6	7 535-5-6	8 508-4-1	9 28-9-22	10 28-9-22	11 65-6-15	12 327-8-39	13 327-8-39	14 617-2-7	15 39-16-6 (1)	16 39-16-10	17 39-16-6	18 39-7-18	19 500-1-39	20 271-7-61	24 480-4-34	22 180-4-34	23 180-4-34	24 500-3-126	25 AFT107007	26 AFT107007	27 AFT107007	28 AFT107007	29 AFT107007	30 508-02-076	31 508-02-076	32 450-15-0100	33 450-15-0100

Notes: a) The ultimate capacity values in these columns represent measured capacities based on corresponding ultimate capacity criteria if those criteria were met. Otherwise, these values were obtained from extrapolation using weighted hyperbolic method. b) B = width of precast square concrete pile; L_p = penetration depth; Q_{ad} = ultimate pile capacity

Research Project 5-6788-01

2.2 Determination of Statistical Distribution of Bias of the Resistance and Development of Resistance Factors

The measured (or extrapolated) ultimate capacities for each ultimate capacity criteria were compared with the predicted capacities obtained using TCP raw blow counts (TCP Raw) without hammer energy correction. Biases (λ_i = measured resistance/predicted resistance) for each test were then computed for each ultimate capacity criterion. In order to compute the mean and coefficient of variation (COV) of the biases, a weighting factor that ranged from 0 to 1 was used to consider the uncertainties associated with the data quality, as done in the previous Research Project 0-6788. Detailed procedures to obtain the weighted mean and COV of the biases are as follows:

- a) Take the log transformation of the data (*i.e.* $x_i = \ln(\lambda_i)$).
- b) Compute the weighted mean (\bar{x}) and variance (s_x) of the log-transformed sample
- c) Plug the weighted mean and variance of the log-transformed sample into the following equations to obtain weighted uniformly minimum variance unbiased estimators (UMVUE) for mean ($E[\lambda]$) and standard deviations ($SD[\lambda]$):

$$E[\lambda] = \exp(\bar{x}) g(0.5s_x^2), \text{ and}$$
(Eq. 3)

$$SD[\lambda]^2 = \exp(2\bar{x}) \{g(2s_x^2) - g\left(\frac{n-2}{n-1}s_x^2\right)\}, \text{ where}$$
 (Eq. 4)

$$g(t) = 1 + \frac{n-1}{n}t + \frac{(n-1)^3}{n^2 2!}\frac{t^2}{n+1} + \frac{(n-1)^5}{n^3 3!}\frac{t^3}{(n+1)(n+3)} + \dots$$
 (Eq. 5)

d) Compute COV by dividing $SD[\lambda]$ by $E[\lambda]$ obtained from Eqs. (3) and (4), respectively.

The weighted UMVUE summary statistics for the 30 load tests on driven piles in soils are given in Table 4. As expected, the mean biases for 5% and 10% criteria are greater than that for Davisson's criterion. It was observed that the COVs for 5% and 10% criteria were also greater than that for Davisson's criterion.

Ultimate Capacity	Total number of load	Effective sample	Mean of Bias	COV of Bias
Criteria	tests considered	size		
	(Total sample size)			
Davisson	30	26.8	1.224	0.532
5%	30	26.8	1.397	0.559
10%	30	26.8	1.600	0.620

Table 4. Summary Statistics for Biases of Resistances for Driven Piles

Resistance factors were obtained following the first order second moment (FOSM) method and the Monte Carlo simulation using the bias statistics presented in Table 4. In the FOSM method, resistance factor (ϕ) is obtained from the following equation:

$$\phi = \frac{\lambda_R \left(\gamma_{DL} \frac{Q_{DL}}{Q_{LL}} + \gamma_{LL} \right) \sqrt{\frac{1 + COV_{Q_{DL}}^2 + COV_{Q_{LL}}^2}{1 + COV_R^2}}}{\left(\lambda_{DL} \frac{Q_{DL}}{Q_{LL}} + \lambda_{LL} \right) exp \left\{ \beta \sqrt{\ln \left[(1 + COV_R^2) \left(1 + COV_{Q_{DL}}^2 + COV_{Q_{LL}}^2 \right) \right]} \right\}}$$
(Eq. 6)

where λ_R = mean bias of the resistance

 λ_{DL} = bias of the dead load λ_{LL} = bias of the live load COV_R = coefficient of variation of the resistance COV_{QDL} = coefficient of variation of the dead load COV_{QLL} = coefficient of variation of the live load γ_{DL} = load factor for dead load γ_{LL} = load factor for live load Q_{DL} = dead load Q_{LL} = live load

 β = target reliability index

In the Monte Carlo simulation, resistance factors are obtained by trying different values of resistance factors (ϕ_{Try}) until the target probabilities of failure of 0.01 (corresponding to $\beta \approx$ 2.33) and 0.001 (corresponding to $\beta \approx$ 3.00) were achieved. In this study, total simulation size was chosen to be 1,000,000.

For both the FOSM method and Monte Carlo simulation, the values presented in Table 5 were used for bias statistics for dead and live loads following recommendation by AASHTO (Nowak 1999).

Table 5. Summary Statistics for Biases of Loads used in This Study

Loads	Dead-to-Live Load Ratio	Load Factors (γ)	Mean of Bias (λ)	COV of Bias
Live Load (LL)	2	$\gamma_{LL} = 1.75$	$\lambda_{LL} = 1.15$	$COV_{LL} = 0.2$
Dead Load (DL)	2	$\gamma_{DL} = 1.25$	$\lambda_{LL} = 1.05$	$COV_{LL} = 0.1$

Tables 6 and 7 present LRFD resistance factors obtained both from the FOSM method and Monte Carlo simulations for target reliability indices of 2.33 and 3.00, respectively. Note that the 95% confidence intervals presented in the table are based on the FOSM resistance factors.

Ultimate Capacity Criteria	Effective Sample Size	Mean of Bias	COV of Bias	ϕ (Monte Carlo)	φ (FOSM)	Lower 95% CI	Upper 95% CI
Davisson	26.8	1.224	0.532	0.44	0.41	0.30	0.53
5%	26.8	1.397	0.559	0.47	0.44	0.31	0.58
10%	26.8	1.600	0.620	0.47	0.44	0.30	0.59

Table 6. Resistance Factors for Total Capacity of Driven Piles in Soils ($\beta = 2.33$)

Table 7. Resistance Factors for Total Capacity of Driven Piles in Soils ($\beta = 3.00$)

Ultimate Capacity Criteria	Effective Sample	Mean of Bias	COV of Bias	ϕ (Monte Carlo)	φ (FOSM)	Lower 95% CI	Upper 95% CI
Davisson	26.8	1.224	0.532	0.30	0.28	0.19	0.39
5%	26.8	1.397	0.559	0.32	0.30	0.20	0.42
10%	26.8	1.600	0.620	0.31	0.29	0.19	0.42

According to our analyses, resistance factors for β of 2.33 obtained from the Monte Carlo simulations are 0.44, 0.47, and 0.47 for Davisson, 5%, and 10% criteria respectively. Similarly, resistance factors for β of 3.00 are 0.30, 0.32, and 0.31 for Davisson, 5%, and 10% criteria respectively. Although the mean bias is the greatest for 10% criterion, it does not necessarily yield the greatest resistance factors because the COV is also the largest for 10% criterion.

3. Reliability Analyses and Develop Resistance Factor for Total Capacity of Drilled Shafts in Soils

3.1 Determination of Ultimate Capacities Based on 5% and 10% Relative Settlement Criteria

The dataset for the previous Research Project 0-6788 consisted of 41 drilled shafts. Among the 41 drilled shafts, 29 of them were installed in soils and the remaining 11 were installed in IGMs or rocks. In this Implementation Project 5-6788-01, reliability analyses were done on the 29 load tests performed on drilled shafts installed in *soil layers only*. Among the 29 load tests in soils, 14 were conventional static top-down load tests, three were statnamic load tests, and the remaining 12 tests were O-cell load tests. Three of the 14 conventional static load tests were instrumented with strain gages, and separate measurements of shaft and base capacities were made. The 12 O-cell tests also provided separate measurements of shaft and base capacities.

Among the 29 load tests in soils, 13, 9, and two were loaded beyond the Davisson's criterion, 5% relative settlement criterion, and 10% relative settlement criterion, respectively. For the 27 load tests that did not reach a settlement of 10% of diameter at the pile head, the load-settlement curves were extrapolated up to 10% pile diameter. In doing so, the research team used the weighted hyperbolic fitting technique for top-down load tests and the t-z method for O-cell tests.

Table 8 presents a summary of the ultimate capacities based on Davisson, 5%, and 10% criteria of drilled shafts in soils (11 tests performed on drilled shafts installed in IGMs or rocks, highlighted with grey color, were also included in Table 8 for the sake of completeness of the dataset). Note that shaft and base capacities were also determined separately using 5% and 10% relative settlement criteria for the instrumented tests. Ultimate capacity values in Columns 19, 22, and 25 represent measured capacities based on corresponding ultimate capacity criteria if those criteria were met. Otherwise, these values were obtained from extrapolations.

Shafts
Drilled
Table for
Summary
Ś
Table

		Project Identification and Loc	tion Data			6 6	hrilled Sha	ft Soil Conditions	Source of	Shaft Resis	stance Soil Belo	3	Ultimate	e Capacity C	Criteria	Qult from	n Davissor arion ^{a)}	's Qui	It from 5%	Criterion ^{al}	a) Quit fre	-om 10% C	riterion ^{a)}	Predicte TCP RAW E	d Capacity Blow Count	Using (kips)	Data (Quality Sco	
1					F	1	$\left \right $		ria o	-	Baca	Test Type			t			$\left \right $				Indial							
Case No.	. ProjectID	LoadTestID [3]	City	County [5]	State Y	'ear B((ii) 2 8	(ft) General Stratigraphy 11 [10]	Grained	irained IG	M/Rock [14]	[15]	Davisso [16]	on 5% [17]	10%	otal S	haft Bi 201 [2	101 Tol	tal Shar 21 [23]	ft Base	Total [25]	Shaft [26]	Base [27]	Total [28]	Shaft [29]	Base Pr [30]	adictive M	easured C	mposite [33]
:	:	:	:	:	:				[11]	[12]					:			•			:		:			:			
34	AFT109054	Site 1A Load Test	Grapevine	Tarrant	Ζ X	£ 000	36	0.0 CH/CH/R/R	%6	%0	91% IGM/Rock	Statnamic				3300								5439	4562	877	4.2	m	7.2
£ %	AFT109054 AFT109054	Site 18 Load Test Site 34 Load Test	Granevine	Tarrant	Z XL	5 600	36 25	5.0 CH/CH/R/R	100%	% %	0% IGM/Rock 0% Fine	 Statnamic Statnamic 	××	××		638 17.88								918 937	396 658	522	4.2	48	9.2 9
8	AFT10305.4	Site 38 Load Test	Granevine	Tarrant	4	000	4	G CH/CH/R/R/R	7962	10	68% IGM/Reek	Statnamic												2442	3636	H.	3	•	3
38	AFT107001NC	Bent 4 Pier 2 Load Test	Sinton	San Patricio	XT XT	007 4	18 51	1.0 SM/CL/SM/CH	25%	75%	0% Coarse	Statnamic				2142		213	74		2225			2454	1863	591	3.8	2.6	6.4
39	AFT107001NC	Bent 3 Pier 1 Load Test	Sinton	San Patricio	TX 2(007 4	18 51	1.0 SM/CL/SM/CH	25%	75%	0% Coarse	Statnamic				051		21(04		2188			245.4	1863	591	3.8	2.6	6.4
40	AFT107001NC	Bent 3 Pier 2 Load Test	Sinton	San Patricio	TX 2(207 4	18 51	1.0 SM/CL/SM/CH	25%	75%	0% Coarse	Statnamic				538		565	77		6323			2454	1863	591	3.8	2.6	6.4
41	3-5-72-176	MTS-1	Montopolis	Travis County	y TX 1:	974 3	30 23	3.0 CL/CL/CL/I	18%	%0	82% Fine	Static Top Down	×			914		10(01		1078			1906	1357	550	4.6	5	9.6
42	3-5-72-176	MTS-2	Montopolis	Travis County	y TX 1:	974 3	30 24	1.0 Ct/Ct/Ct/I	17%	%0	83% Fine	Static Top Down	×			1052		11(08		1156			2030	1480	550	4.6	S	9.6
43	3-5-72-176	MTS-3	Montopolis	Travis Count;	y TX 1:	974 3	30 24	1.0 CL/CL/CL/I	24%	%	76% Fine	Static Top Dow	×	×		977		11	38		1279	_		2077	1528	550	4.6	S	9.6
44	271-14-60	Load Test No. 1	Houston	Harris	4i ¥	967 3	36 60	3.0 CL/SM/CL/CL	95%	5%	0% Fine	Static Top Dow.	Ę			0690		71	08		1763			1663	1475	188	3.2	3.8	7
45	74-2	Test No. 1	Hailey Hollow	Live Oak	4i XL	969 2	24 ZC	0.0 ct/sc	100%	%0	0% Coarse	Static Top Dow	× u	×	×	549		83	25		1130			454	372	81	2.4	4.6	7
46	2374-6	Test No. 2	Dallas	Dallas	TX 1.	975 3	36 20	7.0 CL/SM/I	82%	18%	0% IGM/Rock	Static Top Down	× u	×		840								664	346	317	2.8	2	7.8
47	177-11-7	Test No. 3	Houston	Harris	17 11	953 1	18 26	5.4 CL/CH/CL/CH/CL	100%	%0	0% Fine	Static Top Down	F			121		12	24		125			180	151	29	4.0	4.4	8.4
48	177-11-7	Load Test No. 4	Houston	Harris	17 11	953 1	18 23	3.0 Ct/CH/Ct/CH/CL	100%	%0	0% Fine	Static Top Down	F			110		12	11		124			124	114	6	4.0	4.4	8.4
49	89-8	Load Test Shaft 1 Test 3	Houston	Harris	77 11	970 3	30 23	3.0 CH/CL/CH	100%	%0	0% Fine	Static Top Dowi	×			260	150 1	10 27	73 151	124	278	151	130	245	216	29	5.0	S	10
20	89-8	Load Test Shaft 3 Test 3	Houston	Harris	TX 1	970 3	30 23	3.0 CH/CL/CH	100%	%0	0% Fine	Static Top Dowi	×	×	×	188	104 8	34 15	37 107	6	199	105	93	245	216	29	5.0	5	10
51	89-8	Load Test Shaft 4 Test 1	Houston	Harris	TX 15	970 3	30 45	5.0 CH/CL/CH	100%	%0	0% Fine	Static Top Down	×	×		607	376 2	24 62	362	262	648	418	307	501	456	44	5.0	S	10
52	SS25-1	Test Shaft No. G1	Houston	Harris	77 11	973 3	30 55	3.0 CL/SM	24%	76%	0% Coarse	Static Top Dowi	e			982		56	88		1017			1025	923	102	4.2	3.8	••
23	SS25-1	Test Shaft No. G2	Houston	Harris	TX 1	973 3	12 0%	7.0 CL/SM/CL	55%	45%	0% Coarse	Static Top Dowi	×			1361		13	80		1402			801	772	30	3.6	4.4	~~~
54	SS25-1	Test Shaft No. BB	Houston	Harris	TX 11	973 3	30 45	5.0 CL/SM	23%	77%	0% Coarse	Static Top Down	×	×		1201		135	55		1597			1574	1298	276	3.8	5	8.8
55	TxDOT-UT-ADSC	Test Shaft No. 1	Austin	Travis	TX 21	012 3	30 80	7.3 1/1	%0	%0	100% IGM/Rock	O-Cell				2 408 2	066 3	13						5677	5068	609	4.4	3.4	7.8
56	TxDOT-UT-ADSC	Test Shaft No. 2	Austin	Travis	TX 20	012 3	30 75	1/1 1/1	%0	%0	100% IGM/Rock	0-Cell				282 1	912 3	02						5538	4930	609	4.4	4.4	8.8
57	TxDOT-Dallas	LT-1258 O-Cell Load Test	Dallas	Dallas	TX 2	013 3	36 60	7.8 SC/SP/GP/I	%0	3%	97% IGM/Rock	O-Cell				1316	746 5	69						6745	5866	879	4.6	5	9.6
28	UAR-ADSC-Turrell	LT-1138-5-2	Turrell	Crittenden	AR 21	013 7.	72 65	5.5 CH/ML/SP	26%	74%	0% Coarse	O-Cell				2724 1	651 10	773 31-	48 169	4 1454	40.62	1737	2405	1988	1520	468	5.0	3.5	8.5
29	UAR-ADSC-Turrell	LT-1138-4-1	Turrell	Crittenden	AR 2	013 4	¹⁸ 86	5.2 CH/ML/SP	17%	83%	0% Coarse	0-Cell				2458 2	324 1	35 25	60 241	3 148	2726	2555	171	1641	1523	118	5.0	3.6	8.6
99	UAR-ADSC-Turrell	LT-1138-6-3	Turrell	Crittenden	AR 2	013 4	18 87	7.0 CH/ML/SP	17%	83%	0% Coarse	O-Cell	_			2701 2	064 6	37 29.	18 217	7 741	3417	2406	1011	1695	1543	153	5.0	3.4	8.4
61	UAR-ADSC-SiloamSprin	ng LT-1138-2	Siloam Springs	Benton	AR 2	013 7.	72 21	1.4 SC/R	%0	23%	77% IGM/Rock	O-Cell			-	1724 1	646 3(178						5138	1632	3506	5.0	1.9	6.9
62	UAR-ADSC-SiloamSprin	ng LT-1138-1	Siloam Springs	Benton	AR 2	013 4	48 25	5.2 SC/R	%0	13%	87% IGM/Rock	0-Cell				9650 3	060 21	061						3577	2019	1558	5.0	1.7	6.7
8	024-03-0010	LT-8467 Ragley-1	Ragley	Beauregard	÷i ►	9 666	20	2.2 SM/CL/CH/CL/SM	94%	8%	0% Fine	O-Cell				108	437 6	72 11.	23 441	682	1141	447	694	1696	1432	263	3.6	3.2	6.8
64	024-03-0010	LT-8944 Ragley-2	Ragley	Beauregard	4 A	9 666	56 46	0.6 CL/CH/CL/SM	100%	%0	0% Fine	O-Cell				1151	833	18 12.	18 83(382	1321	838	483	946	805	141	3.4	4.5	7.9
65	103-249-160	LT-9943 Highland Park	Baton Rouge	Baton Rouge	N IN	008	72 81	1.9 CL/CH/CL/CH/CL/CL	100%	%0	0% Fine	O-Cell				1889	33	20 19.	36 157.	5 361	2004	1583	422	2115	1839	276	3.2	4.3	7.5
99	103-249-160	LT-9459 Essen Ln	Baton Rouge	Baton Rouge	N IA	008 4	48 95	3.0 CL/CH/CL/CH/CL	100%	%0	0% Fine	O-Cell				2511 2	1 1329	82 255	94 238	0 214	2792	2473	319	1806	1663	142	4.0	4.2	8.2
67	455-09-0006	LT-9934-2 Unknown Pond	Caddo	Shreveport	₹ N	011 4	18 35	9.5 CH/SM/CL/SM/CL	100%	%0	0% Fine	0-Cell				844	484 3	60 85	59 494	366	874	203	371	846	195	652	3.8	3.4	7.2
89	455-09-0006	US71 LT9934-1	Caddo	Shreveport	LA 2	011 6	56 47	7.0 CL/ML/SM/CH	28%	71%	0% Coarse	O-Cell				1563	9 606	54 15	80 915	999	1596	929	667	1380	1099	281	4.2	e	7.2
69	LT-8249	Bentonite Slurry	Ohkay Owinge.	h Rio Arriba	NM 1:	995 3	31 47	7.0 GW-GM/SM/SW-SM/SP-SM	%0	100%	0% Coarse	O-Cell				459 4	429 1(129 15.	37 48;	1050	1683	598	1085	2278	2031	247	3.8	2.8	6.6
02	LT-8249	Polymer Slurry Test No. 2	Ohkay Owinge.	h Rio Arriba	NM 1:	995 3	31 47	7.0 GW-GM/SM/SW-SM/SP-SM	%0	100%	0% Coarse	O-Cell				748	529 12	181 181	08 584	1224	2000	763	1237	2296	2049	247	3.8	2.8	6.6
71	LT-9190	Sunland Park TestShaft No. 1	Sunland Park	Dona Ana	NM 2(006 4	18 74	1.5 SM/SM/SP/SM/SP	%0	100%	0% Coarse	O-Cell			-	855 1	307 5	48 21)	18 140	5 714	2916	1568	1348	2309	1965	344	3.8	2.2	9
72	FHWA-HPR-NM-90-03	FHWA-HPR-NM-90-03	Albequerque	Bernalillo	NM 15	993 3	32 54	1.9 SP/SM/GW-GM/ML/SM	12%	87%	0% Coarse	Static Top Down	×	×	-	483		16:	37		2248	_		1247	1135	112	4.2	2	9.2
73	405-681-6737	LT-1025-1	Hollis	Harmon	OK 2	013 7	72 80	0.1 SM/CL/CH/VOID/CH/R/VOID/R/R/	R 61%	4%	35% IGM/Rock	0-Cell				2415 1	507 9	80						8306	7575	731	2.8	2.6	5.4
74	405-681-6737	LT 1025-2	Hollis	Harmon	OK 2	013 7	72 10	11.3 SM/CL/CH/VOID/CH/R/VOID/R/R/	R 48%	3%	49% IGM/Rock	Cell				2794 2	229 5	65						10340	6096	731	2.8	2.8	5.6
Notes:	: a) The ultimate	capacity values in the	se columns	s represent	measu	red ca	ıpacitiε	as based on corresponding	ultimate c	apacity	criteria if th	ose criteria w	vere met	st. Other	wise, t	hese v	alues v	vere ol	btainec	f from (extrap	volation	using	weight	ted hyp	erbolic	method		

stes: a) The ultimate capacity values in these columns represent measured capacities based on corresponding ultim b) $B = diameter of drilled shaft; L_p = embedment depth; <math>Q_{adr} =$ ultimate pile capacity

Research Project 5-6788-01

3.2 Determination of Statistical Distribution of Bias of the Resistance and Development of Resistance Factors

The measured (or extrapolated) ultimate capacities for each ultimate capacity criteria were compared with the predicted capacities obtained using TCP raw blow counts (TCP Raw) without hammer energy correction. Biases (λ_i = measured resistance/predicted resistance) for each test were then computed for each ultimate capacity criterion. In order to compute the mean and coefficient of variation (COV) of the biases, a weighting factor that ranged from 0 to 1 was used to consider the uncertainties associated with the data quality, as done in the previous Research Project 0-6788. The same procedures described in Section 2.2 of this report were used to obtain the weighted mean and COV of the biases.

The weighted UMVUE summary statistics for the 29 load tests on drilled shafts in soils are given in Table 9. As expected, the mean biases for 5% and 10% criteria are greater than that for Davisson's criterion. It was observed that the COVs for 5% and 10% criteria were also greater than that for Davisson's criterion.

Ultimate Capacity	Total number of load	Effective sample	Mean of Bias	COV of Bias
Criteria	tests considered	size		
	(Total sample size)			
Davisson	29	26.4	1.027	0.393
5%	29	26.4	1.100	0.399
10%	29	26.4	1.219	0.443

Table 9. Summary Statistics for Biases of Resistances for Drilled Shafts in Soils

As was done for the driven piles, resistance factors for drilled shafts in soils were obtained following the FOSM method and the Monte Carlo simulation using the bias statistics presented in Table 9. Tables 10 and 11 present LRFD resistance factors for total capacity of drilled shafts in soils obtained both from the FOSM method and Monte Carlo simulations for target reliability indices of 2.33 and 3.00, respectively. Note that the 95% confidence intervals presented in the table are based on the FOSM resistance factors.

Ultimate Capacity Criteria	Effective Sample Size	Mean of Bias	COV of Bias	ϕ (Monte Carlo)	φ (FOSM)	Lower 95% CI	Upper 95% CI
Davisson	26.4	1.027	0.393	0.51	0.46	0.36	0.57
5%	26.4	1.100	0.399	0.54	0.49	0.39	0.59
10%	26.4	1.219	0.443	0.54	0.49	0.39	0.60

Table 10. Resistance Factors for Total Capacity of Drilled Shafts in Soils ($\beta = 2.33$)

Ultimate Capacity Criteria	Effective Sample Size	Mean of Bias	COV of Bias	ϕ (Monte Carlo)	φ (FOSM)	Lower 95% CI	Upper 95% CI
Davisson	26.4	1.027	0.393	0.38	0.34	0.26	0.44
5%	26.4	1.100	0.399	0.40	0.36	0.28	0.45
10%	26.4	1.219	0.443	0.39	0.36	0.27	0.45

Table 11. Resistance Factors for Total Capacity of Drilled Shafts in Soils ($\beta = 3.00$)

According to our analyses, resistance factors for total capacity of drilled shafts installed in soils with β of 2.33 obtained from Monte Carlo simulations are 0.51, 0.54, and 0.54 for Davisson, 5%, and 10% criteria respectively. Similarly, resistance factors with β of 3.00 are 0.38, 0.40, and 0.39 for Davisson, 5%, and 10% criteria respectively. Although the mean bias is the greatest for 10% criterion, it does not necessarily yield the greatest resistance factors because the COV is also the largest for 10% criterion.

In addition to the resistance factors for total capacity of drilled shafts in soils, resistance factors for shaft and base capacities were also obtained using results from the 15 instrumented load tests. Tables 12 and 13 present LRFD resistance factors for shaft capacity of drilled shafts in soils obtained both from the FOSM method and Monte Carlo simulations for target reliability indices of 2.33 and 3.00, respectively.

Ultimate Capacity Criteria	Total number of load tests considered (Total sample size)	Effective Sample Size	Mean of Bias	COV of Bias	φ (Monte Carlo)	φ (FOSM)	Lower 95% CI	Upper 95% CI
Davisson	15	13.6	0.968	0.717	0.23	0.22	0.11	0.37
5%	15	13.6	0.986	0.696	0.25	0.23	0.13	0.38
10%	15	13.6	1.029	0.66	0.28	0.26	0.15	0.4

Table 12. Resistance Factors for Shaft Capacity of Drilled Shafts in Soils ($\beta = 2.33$)

Table 13. Resistance Factors for Shaft Capacity of Drilled Shafts in Soils ($\beta = 3.00$)

Ultimate Capacity Criteria	Total number of load tests considered (Total sample size)	Effective Sample Size	Mean of Bias	COV of Bias	φ (Monte Carlo)	φ (FOSM)	Lower 95% CI	Upper 95% CI
Davisson	15	13.6	0.968	0.717	0.14	0.14	0.06	0.25
5%	15	13.6	0.986	0.696	0.15	0.15	0.07	0.26
10%	15	13.6	1.029	0.66	0.18	0.17	0.09	0.28

Tables 14 and 15 present resistance factors for base capacity of drilled shafts in soils obtained both from FOSM method and Monte Carlo simulations for target reliability indices of 2.33 and 3.00, respectively.

			1 2			0	/	
Ultimate Capacity Criteria	Total number of load tests considered (Total sample size)	Effective Sample Size	Mean of Bias	COV of Bias	φ (Monte Carlo)	φ (FOSM)	Lower 95% CI	Upper 95% CI
Davisson	15	13.6	2.760	0.674	0.72	0.67	0.34	1.17
5%	15	13.6	3.099	0.681	0.79	0.75	0.36	1.37
10%	15	13.6	3.747	0.709	0.90	0.85	0.37	1.68

Table 14. Resistance Factors for Base Capacity of Drilled Shafts in Soils ($\beta = 2.33$)

Table 15. Resistance Factors for Base Capacity of Drilled Shafts in Soils ($\beta = 3.00$)

Ultimate Capacity Criteria	Total number of load tests considered (Total sample size)	Effective Sample Size	Mean of Bias	COV of Bias	φ (Monte Carlo)	φ (FOSM)	Lower 95% CI	Upper 95% CI
Davisson	15	13.6	2.760	0.674	0.45	0.44	0.20	0.82
5%	15	13.6	3.099	0.681	0.50	0.48	0.20	0.98
10%	15	13.6	3.747	0.709	0.56	0.54	0.20	1.20

4. Summary, Conclusions and Recommendations

This research study has developed resistance factors for total capacity of driven piles and drilled shafts in soils using 5% and 10% relative settlement criteria as ultimate capacity criteria. Among the final dataset of 70 load tests, 59 tests (30 for driven piles and 29 for drilled shafts) performed in soil layers only were considered in this study. With consideration to data quality, the effective sample sizes are 26.8 and 26.4 for driven piles and drilled shafts in soils, respectively. For drilled shafts, in addition to the resistance factors for total capacity, resistance factors for shaft and base capacities were also obtained using results from the 15 instrumented load tests.

4.1 Resistance Factors for Driven Piles in Soils

Resistance factors for total capacity of driven piles in soils predicted with raw TCP blowcounts are presented in Table 16 with target reliability index β of 2.33 and 3.0. The effective sample size used in the analysis for driven piles in soils was 26.8.

Ultimate Capacity Criteria	Effective Sample Size	Mean of Bias	COV of Bias	Resistance factor ϕ (β = 2.33)	Resistance factor ϕ (β = 3.00)
Davisson	26.8	1.224	0.532	0.44	0.30
5%	26.8	1.397	0.559	0.47	0.32
10%	26.8	1.600	0.620	0.47	0.31

Table 16. Resistance Factors Obtained from Monte Carlo Simulations for Total Capacity of Driven Piles in Soils

Based on the size and scope of the dataset, literature review, and statistical analyses, the following conclusions and recommendations are supported by this research:

- Although the mean bias is the greatest for 10% criterion, it does not necessarily yield the greatest resistance factors because the COV is also the largest for 10% criterion.
- Considering wide spread use of Davisson criterion for driven piles in United States and small increase in ϕ values when other criteria were used, resistance factors from Davisson capacity are recommended for driven piles in soils.
- The resistance factors of 0.44 and 0.30 (with target reliability index of 2.33 and 3.0, respectively) for total capacity of driven piles in soils using raw TCP blowcounts are suitable for implementation for small projects.
- For large projects, we recommend consideration of determining ultimate capacity from static or dynamic load tests in accordance with AASHTO policy (AASHTO 2012) which will yield higher resistance factors.

4.2 Resistance Factors for Total Capacity of Drilled Shafts in Soils

Resistance factors for total capacity of drilled shafts in soils predicted with raw TCP blowcounts are presented in Table 17 with target reliability index β of 2.33 and 3.0. The effective sample size used in the analysis for driven piles in soils was 26.4.

2111100 2110110	111 8 0 118				
Ultimate Capacity Criteria	Effective Sample Size	Mean of Bias	COV of Bias	Resistance factor ϕ (β = 2.33)	Resistance factor ϕ (β = 3.00)
Davisson	26.4	1.027	0.393	0.51	0.38
5%	26.4	1.100	0.399	0.54	0.40
10%	26.4	1.219	0.443	0.54	0.39

Table 17. Resistance Factors Obtained from Monte Carlo Simulations for Total Capacity of

 Drilled Shafts in Soils

Based on the size and scope of the dataset, literature review, and statistical analyses, the following conclusions and recommendations are supported by this research:

• Although the mean bias is the greatest for 10% criterion, it does not necessarily yield the greatest resistance factors because the COV is also the largest for 10% criterion.

- Considering that FHWA suggests 5% criterion for drilled shafts (O'Neil and Reese 1999) and 5% yields the largest ϕ value among the three criteria considered in this study, resistance factors from 5% criterion are recommended for drilled shafts in soils.
- The resistance factors of 0.54 and 0.40 (with target reliability index of 2.33 and 3.0, respectively) for total capacity of drilled shafts in soils using raw TCP blowcounts are suitable for implementation.
- For large projects, we recommend consideration of determining ultimate capacity from static load tests in accordance with AASHTO policy (AASHTO 2012) which will yield higher resistance factors.

4.3 Resistance Factors for Shaft and Base Capacities of Drilled Shafts in Soils

Resistance factors for shaft and base capacities of drilled shafts in soils predicted with raw TCP blowcounts are presented in Tables 18 and 19, respectively, with target reliability index β of 2.33 and 3.0. The effective sample size used in the analysis for driven piles in soils was 13.6.

Table 18. Resistance Factors Obtained from Monte Carlo Simulations for Shaft Capacity of

 Drilled Shafts in Soils

Ultimate Capacity Criteria	Effective Sample Size	Mean of Bias	COV of Bias	Resistance factor ϕ (β = 2.33)	Resistance factor ϕ ($\beta = 3.00$)
Davisson	13.6	0.968	0.717	0.23	0.14
5%	13.6	0.986	0.696	0.25	0.15
10%	13.6	1.029	0.660	0.28	0.18

Table 19. Resistance Factors Obtained from Monte Carlo Simulations for Base Capacity of

 Drilled Shafts in Soils

Ultimate Capacity Criteria	Effective Sample Size	Mean of Bias	COV of Bias	Resistance factor ϕ (β = 2.33)	Resistance factor ϕ (β = 3.00)
Davisson	13.6	2.760	0.674	0.72	0.45
5%	13.6	3.099	0.681	0.79	0.50
10%	13.6	3.747	0.709	0.90	0.56

Based on the size and scope of the dataset, literature review, and statistical analyses, the following conclusions and recommendations are supported by this research:

- Resistance factors differentiated for shaft and base capacity and based on raw TCP blowcounts for drilled shafts in soils are *variable*:
 - Shaft: 0.25 and 0.15 (with target reliability index of 2.33 and 3.0, respectively)
 - o Base: 0.79 and 0.50 (with target reliability index of 2.33 and 3.0, respectively)
- For small projects where differentiation between base and shaft resistances is not critical, the resistance factors for shaft and base resistance are suitable for implementation.

• For large projects where it is critical that base and shaft resistance be differentiated, we recommend consideration of determining ultimate capacity from static load tests in accordance with AASHTO policy (AASHTO 2012) which will yield higher resistance factors.

REFERENCES

AASHTO (2012). AASHTO LRFD Bridge Design Specifications, Customary U.S. Units, 6th Edition. American Association of State Highway and Transportation Officials

AbdelSalam, S. S., Ng, K. W., Sritharan, S., Suleiman, M. T., and Roling, M. (2012). *Development of LRFD Procedures for Bridge Pile Foundations in Iowa - Volume III: Recommended Resistance Factors with Consideration of Construction Control and Setup*, Report No. IHRB Projects TR-584, Institute for Transportation, Iowa State University

AbdelSalam, S. S., Sritharan, S., Suleiman, M. T. (2010). "Current Design and Construction Practices of Bridge Pile Foundations with Emphasis on Implementation of LRFD." Journal of Bridge Engineering, 15(6), pp. 749-758

Abu-Farsakh, M. Y., Yoon, S., and Tsai, C. (2009). Calibration of Resistance Factors Needed in the LRFD Design of Driven Piles, Report No. FHWA/LA.09/449, Louisiana Transportation Research Center

Abu-Farsakh, M. Y., Yu, Xinbao, Yoon, S., and Tsai, C. (2010). Calibration of Resistance Factors Needed in the LRFD Design of Drilled Shafts, Report No. FHWA/LA.10/470, Louisiana Transportation Research Center

ADOT (2011). Bridge Design Guidelines, Arizona Department of Transportation

AHTD (2014). *Standard Specification for Highway Construction*. Arkansas State Highway and Transportation Department

ALDOT (2015). *Structural Design Manual*. Alabama Department of Transportation Bridge Bureau

Allen, T. M. (2005). *Development of the WSDOT Pile Driving Formula and Its Calibration for Load and Resistance Factor Design (LRFD)*. Final Report Prepared for Washington State Department of Transportation. Report No. WA-RD 610.1

Ashour, M., Helal, A., and Ardalan, H. (2012). *Upgrade of Axially Loaded Pile-Soil Modeling with the Implementation of LRFD Design Procedure*. Research Report submitted to State of Alabama Department of Transportation (ALDOT), Contract No. 930-769

Caltrans DRISI (2014). "Calibrating LRFD Geotechnical Axial (Tension and Compression) Resistance Factors (ϕ) for Driven Piles and Drilled Shafts." Research Notes, Caltrans Division of Research, Innovation and System Information

CDOT (2011). *CDOT Strategic Plan for Data Collection and Evaluation of Grade 50 H-Piles Into Bedrock*. Report No. CDOT-2011-11, Colorado Department of Transportation

Chin, F. V. (1970). "Estimation of Ultimate Load of Piles Not Carried to Failure." Proceedings of 2nd Southeast Asian Conference on Soil Engineering, pp.81-90

Coffman, R. A. (2015). *LRFD Calibration for Drilled Shaft Foundations*. Ongoing research project sponsored by the Arkansas State Highway and Transportation Department, the Deep

Foundations Institute, McKinney Drilling, Aldridge Drilling, and the University of Arkansas (Retrieved from <u>http://trc1204-lrfd-drilled-shafts.uark.edu/</u> on June 23, 2015)

ConnDOT (2005). *Geotechnical Engineering Manual*. Connecticut Department of Transportation

DelDOT (2005). Bridge Design Manual. The State of Delaware Department of Transportation.

Densmore, D. H. (2000, May 30). *Load and Resistance Factor Design (LRFD) Memo*. Retrieved March 19, 2012, from http://www.fhwa.dot.gov/bridge/062800.htm

FDOT (2015). Structures Design Guidelines. Florida Department of Transportation

Foster, J. H. and Huft, D. L. (2008). *Review and Refinement of SDDOT's LRFD Deep Foundation Design Method*. Final Report Prepared for South Dakota Department of Transportation. Report No. SD2008-08-P

GDOT (2015). Bridges and Structures Design Manual. Georgia Department of Transportation

HDOT (2005). Standard Specifications. State of Hawaii Department of Transportation

IDOT (2012). Bridge Manual. Illinois Department of Transportation

ITD (2015). LRFD Bridge Design Manual. The Idaho Transportation Department

Kuo, C. L., McVay, M., and Birgisson, B. (2002). "Calibration of load and resistance factor design." Transportation Research Record 1808, Transportation Research Board, Washington, DC, 108–111.

KYTC (2014). Structural Design. Kentucky Transportation Cabinet

Loehr, J. E., Bowders, J.J., Ge, L., Likos, W. J., Luna, R., Maerz, N., Rosenblad, B. L., and Stephenson, R. W. (2011). *Engineering Policy Guidelines for Design of Drilled Shafts*. Final Report Prepared for Missouri Department of Transportation, Project TRyy0922, Report No.: cmr12003

Luna, R. (2014). *Evaluation of Pile Load Tests for Use in Missouri LRFD Guidelines*. Final Report Prepared for Missouri Department of Transportation, Project TRyy1226, Report No.: cmr14-015

MaineDOT (2014). Bridge Design Guide. The Maine Department of Transportation

MassDOT (2013). LRFD Bridge Manual – Part I. Massachusetts Department of Transportation

MDOT (2010). Bridge Design Manual. Mississippi Department of Transportation

MDT (2008). Geotechnical Manual. Montana Department of Transportation

MIDOT (2012). Bridge Design Manual. Michigan Department of Transportation

NDDOT (2013). Design Manual. North Dakota Department of Transportation

NevadaDOT (2008). Structures Manual. Nevada Department of Transportation

Ng, T-T. and Fazia, S. (2012). *Development and Validation of a Unified Equation for Drilled Shaft Foundation Design in New Mexico*. Final Report Prepared for New Mexico Department of Transportation, Report No. NM10MSC-01

NHDOT (2010). *Standard Specifications for Road and Bridge Construction*. State of New Hampshire Department of Transportation.

NJDOT (2009). *Design Manual for Bridges and Structures*. New Jersey Department of Transportation

Nowak, A. (1999). "NCHRP Report 368: Calibration of LRFD Bridge Design Code". TRB, Washington, DC.

Nowak, A. S., Kozikowski, M., Larsen, J., Lutomirski, T., and Paczkowski, P. (2007). *Implementation of the AASHTO LRFD Code in Geotechnical Design-Piles*. Final Report Prepared for Nebraska Department of Roads, Report No. SPR-1(07) P595

NYSDOT (2014). *LRFD Bridge Design Specifications*. New York State Department of Transportation

ODOT (2015). Bridge Design and Drafting Manual. Oregon Department of Transportation

OHDOT (2013). Bridge Design Manual. State of Ohio Department of Transportation

OHDOT (2013). Construction and Material Specifications. State of Ohio Department of Transportation

OKDOT (2009). Standard and Specifications Book. Oklahoma Department of Transportation

Paikowsky, S. G., Canniff, M., Robertson, S., and Budge, A. S. (2014). Load and Resistance Factor Design (LRFD) Pile Driving Project – Phase II Study. Minnesota State University

PennDOT (2015). Design Manual, Part 4. Pennsylvania Department of Transportation

Rahman, M. S., Gabr, M. A., Sarica, R. Z., and Hossain, M. S. (2002). *Load and Resistance Factor Design (LRFD) for Analysis/Design of Piles Axial Capacity*. Final Report Prepared for North Carolina Department of Transportation, Report No. FHWA/NC/2005-08

O'Niel, M. W. and Reese, L. C. (1999). Drilled Shafts: Construction Procedures and Design Methods. Report No. FHWA-IF-99-025, Federal Highway Administration

RIDOT (2007). LRFD Bridge Design Manual. Rhode Island Department of Transportation

Salgado, R., Woo, S. I., and Kim, D. (2011). *Development of Load and Resistance Factor Design for Ultimate and Serviceability Limit States of Transportation Structure Foundations*. Publication FHWA/IN/JTRP-2011/03, Joint Transportation Research Program, Indiana Department of Transportation and Purdue University

SCDOT (2010). Geotechnical Design Manual. South Carolina Department of Transportation

SDDOT (2014). Structures Construction Manual. South Dakota Department of Transportation

SDDOT (2015). *Standard Specifications for Roads and Bridges*. South Dakota Department of Transportation

Smith, T. D., Banas, A., Gummer, M., and Jin, J. (2011). *Recalibration of the GRLWEAP LRFD Resistance Factor for Oregon DOT*. Final Report Prepared for Oregon Department of Transportation, Report No. FHWA-OR-RD-11-08

UDOT (2011). Geotechnical Manual of Instruction. Utah Department of Transportation

UDOT (2015). Structures Design and Detailing Manual. Utah Department of Transportation

VDOT (2010). Geotechnical Manual for Structures. Virginia Department of Transportation

VTrans (2010). VTrans Structures Design Manual. Vermont Agency of Transportation

WisDOT (2015). Bridge Design Manual. State of Wisconsin Department of Transportation

WSDOT (2015). Geotechnical Design Manual. Washington State Department of Transportation

WVDOH (2014). Bridge Design Manual. West Virginia Division of Highways

WYDOT (2013). Bridge Design Manual. Wyoming Department of Transportation

Yang, X., Han, J., Parson, R. L. (2010). *Development of Recommended Resistance Factors for Drilled Shafts in Weak Rocks Based on O-Cell Tests*. Report No. K-Tran:KU-07-4, A Cooperative Transportation Research Program between Kansas Department of Transportation and The University of Kansas