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AUTHOR’S DISCLAIMER

The contents of this report reflect the views of the authors who are responsible for the facts and
the accuracy of the data presented herein. The contents do not necessarily reflect the official
view of policies of the Texas Department of Transportation or the Federal Highway
Administration. This report does not constitute a standard, specification, or regulation.

PATENT DISCLAIMER

There was no invention or discovery conceived or first actually reduced to practice in the course
of or under this contract, including any art, method, process, machine, manufacture, design or
composition of matter, or any new useful improvement thereof, or any variety of plant which is
or may be patentable under the patent laws of the United States of America or any foreign
country.

ENGINEERING DISCLAIMER

Not intended for construction, bidding, or permit purposes.

TRADE NAMES AND MANUFACTURERS’ NAMES

The United States Government and the State of Texas do not endorse products or manufacturers.

Trade or manufacturers’ names appear herein solely because they are considered essential to the
object of this report.
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REVIEW OF ULTIMATE CAPACITY CRITERIA IMPLEMENTED

BY OTHER STATE DOTs

This report presents a summary of the work completed under the TXDOT Implementation
Project 5-6788-01: Implementation of LRFD Geotechnical Design for Deep Foundations Using
Texas Cone penetrometer (TCP) Test and final recommendations.

As part of this literature review effort, a large number of research reports, bridge design
manuals, geotechnical manuals, and standard specifications published by each state Department
of Transportation (DOTs) were collected and reviewed in detail. These publications discuss
topics related to the development and implementation of the Load and Resistance Factor Design
(LRFD) for deep foundations and the ultimate capacity criteria to determine a foundation’s load
carrying capacity.

1.1 Research Studies Published by Other DOTs Which Have Explored the Implementation
of LRFD for Deep Foundations

Ever since the Federal Highway Administration (FHWA) mandated the use of the load
and resistance factor design (LRFD) approach for all new bridges initiated after September 2007
(Densemore 2000), most DOTs have been working on implementation of LRFD for design of
bridge foundations. AbdelSalam et al. (2010) conducted a nationwide survey of more than 30
DOTs on the bridge deep foundation practices in 2008. According to AbdelSalam et al. (2010),
as of 2008 24 states had implemented the LRFD method to a certain extent, five states were still
using the allowable stress design (ASD) method, and 21 states were in the process of
transitioning to the LRFD method. Figure 1 shows the status of LRFD implementation for bridge
foundation design at the time of the survey.

Research Project 5-6788-01 Page 1



[ Currently using ASD
O Implemented LRFD

= Intransition from

ASD to LRFD

Figure 1. Status of LRFD Implementation of State DOTSs as of 2008 (AbdelSalam et al. 2010)

Although the survey completed by AbdelSalam et al. (2010) indicated that 24 states had
implemented the LRFD method, not all research reports were available at the time of preparation
of this report. In fact, it appears that many DOTs did not perform any research study to calibrate
region-specific resistance factors against target reliability index, but rather obtained resistance
factors by fitting to the ASD factor of safety based on past local experience, or simply
recommended using the resistance factors suggested in AASHTO LRFD Bridge Design
Specifications (AASHTO 2012). On the other hand, some of the states identified as transitioning
from ASD to LRFD in the survey by AbdelSalam et al. (2010) now published preliminary
reports presenting the implementation of the LRFD method for their corresponding states. The
results of review of research reports, bridge design manuals, geotechnical manuals, and standard
specifications published by each state DOT are summarized in Table 1.

Research Project 5-6788-01 Page 2
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According to our review, 12 state DOTs performed research projects in an effort to
calibrate resistance factors against target reliability index for driven piles, drilled shafts or both.
Five state DOTs obtained resistance factors by fitting to the ASD factor of safety based on local
experience. The remaining DOTSs either refer to AASHTO LRFD manual for resistance factors
or do not specify resistance factors in their design manuals. Fig. 2 shows the LRFD
implementation status of 49 states (Texas not included) based on our review of research reports,
bridge design manuals, geotechnical manuals, and standard specifications published by each
DOT. It should be noted that among the 12 DOTSs that performed research projects to calibrate
resistance factors against target reliability index, only four DOTs (Florida, Indiana, Louisiana,
and Missouri) performed calibration for both driven piles and drilled shafts. The remaining eight
DOTs performed calibration either for driven piles or for drilled shafts only. Further details are
given in Table 2.

= Refers to AASHTO LRFD manual or
Resistance factors not specified

m Resistance factor obtained by fitting
to ASD factor of safety based on
past local experience

= Resistance factor obtained from
reliability analysis

Fig. 2 Status of LRFD Implementation Based on Review of Research Reports, Bridge Design
Manuals, Geotechnical Manuals, and Standard Specifications Published by Each DOT

Research Project 5-6788-01 Page 7



Table 2. Summary of Other DOTs’ Datasets Used for LRFD Reliability Analyses

Reliability Analysis Number of Datasets
State Driven Piles Drilled Shafts Driven Piles Drilled Shafts

Florida X X NS 273
lllinois X NS NA
Indiana X X NA* NA*
lowa X 264** NA
Kansas X NA 26
Louisiana X X 53** 26
Minnesota X 270** NA
Missouri X X NS 31
New Mexico X NA 24
North Carolina X 175** NA
Oregon X 322** NA
Washington X 141** NA

Texas X X 30 40 (1219i|nnlséol\|/llss)and

* Research framework is different from conventional resistance calibration process.
** Dataset includes dynamic load tests using PDA.

1.2 Ultimate Bearing Capacity Methods Used by Other DOTs

In order to investigate which ultimate capacity criterion is employed by other DOTSs to
determine measured ultimate bearing capacity for deep foundations, a review of published
research reports and design manuals corresponding to state DOTs was completed. A summary of
our review on the ultimate capacity criteria is presented in Table 1.

As shown in Fig. 3(a), for driven piles, 37 states out of 49 states (76%) do not specify
which criterion is used to determine the ultimate capacity. Among the 12 states which specified
the ultimate capacity criterion, 11 states use Davisson’s criterion as an ultimate capacity criterion
(seven states explicitly used Davisson’s criterion for calibration of resistance factors and four
states specify Davisson’s criterion to be used to determine ultimate capacity of driven piles in
Bridge Design Manuals or Geotechnical Manuals, even though calibrations of resistance factors
were not performed). Finally, only one state (Indiana) used the 10% relative settlement criterion
as an ultimate capacity criterion (i.e., defining the load at pile head settlement corresponding to
10% of pile diameter as an ultimate capacity) for calibration of resistance factors for driven piles.

In case of drilled shafts, 44 states out of 49 states (90%) do not specify which criterion is
used to determine the ultimate capacity, as shown in Fig. 3(b). Three states used the 5% relative
settlement criterion as an ultimate capacity criterion (i.e., defining the load at pile head
settlement corresponding to 5% of pile diameter as an ultimate capacity) for calibration of
resistance factors for drilled shafts. Again, only one state (Indiana) used the ultimate capacity
based on 10% criterion for calibration of resistance factors for drilled shafts.

Research Project 5-6788-01 Page 8



Ultimate capacity criteria for driven piles
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Ultimate capacity criteria for drilled shafts
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Fig. 3 Ultimate Capacity Criteria Implemented by State DOTSs for (a) Driven Piles and (b)
Drilled Shafts

Research Project 5-6788-01 Page 9



2. Reliability Analyses and Development of Resistance Factor for Total Capacity of Driven
Piles in Soils

2.1 Determination of Ultimate Capacities Based on 5% and 10% Relative Settlement
Criteria

The dataset for the previous Research Project 0-6788 consisted of 33 driven piles. All 33
driven piles are precast square concrete piles with widths ranging from 14 to 20 inches and
penetration depths ranging from 15 to 83.5 ft. Among the 33 load tests, 28 of them were
conventional static top-down load tests and the remaining five tests were statnamic load tests.
None of the 33 load tests were instrumented with strain gages; therefore, resistance factors were
determined only for total capacity.

Among the 33 load tests, 22, 12, and one were loaded beyond the Davisson’s criterion, 5%
relative settlement criterion, and 10% relative settlement criterion, respectively. Among the 11
tests which did not reach the Davisson’s offset line, eight reached at least an elastic line and were
included in our dataset. However, the remaining three tests which did not reach even the elastic
line were deemed non-usable and therefore excluded from the dataset for the subsequent
reliability analyses in the previous Research Project 0-6788. Consequently, 30 tests on driven
piles were included in the final load-test dataset. The same 30 load tests were used in this
Implementation Project 5-6788-01.

For the 29 load tests that did not reach a settlement of 10% of diameter at the pile head,
the load-settlement curves were extrapolated up to 10% pile diameter. In doing so, the research
team used the weighted hyperbolic fitting technique. In the original Chin’s method (Chin 1970),
it is assumed that the load-settlement curves of deep foundations are hyperbolic as follows:

_ w
Q= W+, (Eg.1)

where Q = applied load, w = pile head settlement, and C1 & C» = fitting constants. Chin (1970)
suggested that C; and C> be determined by fitting a straight line through load test results in w/Q
versus w space. In this fitting process, it is implicitly assumed that each data point carries the
same weight. On the other hand, the weighted hyperbolic technique, which was developed in the
previous Research Project 0-6788, takes the squared values of each settlement data point as
weights to determine the fitting parameters for the hyperbolic curve. Mathematically, the fitting
constants Cy and C; are the parameters found using a weighted least-square regression method
and expressed as follows:

Research Project 5-6788-01 Page 10
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C2:

where Qi = each applied load, wi = each measured settlement, and n = summation of weights.
The weighted hyperbolic curve is then constructed using the C; and C» obtained from Egs. (2a)
and (2b), respectively. In the previous Research Project 0-6788, it was found that the weighted
hyperbolic fitting technique yielded slightly less scatter than the original Chin’s method, when
comparing the Davisson capacity from the extrapolated curve with that from the measured load-
settlement curve.

In this Implementation Project 5-6788-01, ultimate capacities based on 5% and 10%
relative settlement criteria were determined from the weighted hyperbolic curves using the
aforementioned technique. Table 3 presents a summary of the ultimate capacities based on
Davisson, 5%, and 10% criteria of driven piles (the three tests disregarded in the subsequent
analysis, highlighted with red color and struck-through, were also included in Table 3). It should
be noted that the ultimate capacity values in Columns 18 through 20 represent measured
capacities based on corresponding ultimate capacity criteria if those criteria were met.
Otherwise, these values were obtained from extrapolation using the weighted hyperbolic method.

Research Project 5-6788-01 Page 11
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2.2 Determination of Statistical Distribution of Bias of the Resistance and Development of
Resistance Factors

The measured (or extrapolated) ultimate capacities for each ultimate capacity criteria were
compared with the predicted capacities obtained using TCP raw blow counts (TCP Raw) without
hammer energy correction. Biases (4i = measured resistance/predicted resistance) for each test
were then computed for each ultimate capacity criterion. In order to compute the mean and
coefficient of variation (COV) of the biases, a weighting factor that ranged from 0 to 1 was used
to consider the uncertainties associated with the data quality, as done in the previous Research
Project 0-6788. Detailed procedures to obtain the weighted mean and COV of the biases are as
follows:

a) Take the log transformation of the data (i.e. xi = In(4i)).
b) Compute the weighted mean (x) and variance (Sx) of the log-transformed sample

c) Plug the weighted mean and variance of the log-transformed sample into the following
equations to obtain weighted uniformly minimum variance unbiased estimators (UMVUE)
for mean (E[A]) and standard deviations (SD[A]):

E[A] = exp(X) g(0.5s2), and (Eq. 3)
SD[A]? = exp(2%) {g(2s2) — g (:—j s,g)}, where (Eq. 4)
-1 m-13 2 (m-1)° t3

(Eq. 5)

n
=1 t
9O = e a1 T 3 DmT )

d) Compute COV by dividing SD[A] by E[A] obtained from Eqgs. (3) and (4), respectively.

The weighted UMVUE summary statistics for the 30 load tests on driven piles in soils are
given in Table 4. As expected, the mean biases for 5% and 10% criteria are greater than that for
Davisson’s criterion. It was observed that the COVs for 5% and 10% criteria were also greater
than that for Davisson’s criterion.

Table 4. Summary Statistics for Biases of Resistances for Driven Piles

Ultimate Capacity Total number of load Effective sample Mean of Bias | COV of Bias
Criteria tests considered size
(Total sample size)
Davisson 30 26.8 1.224 0.532
5% 30 26.8 1.397 0.559
10% 30 26.8 1.600 0.620

Research Project 5-6788-01 Page 13



Resistance factors were obtained following the first order second moment (FOSM)
method and the Monte Carlo simulation using the bias statistics presented in Table 4. In the
FOSM method, resistance factor (¢) is obtained from the following equation:

1+ COV?
Ar (VDL g_LL)II: + VLL)\/ Cos

+ CoV2

QLL

1+ COV?

(200 G2

QDL

Ot Aur) exp {ﬁ\/ln (1+ COVR) (1 + COVE,, + COV

]

where Ar = mean bias of the resistance

/oL = bias of the dead load

ALL = bias of the live load

COVrR = coefficient of variation of the resistance

COVqpL = coefficient of variation of the dead load

COVqLL = coefficient of variation of the live load

yp., = load factor for dead load

v, = load factor for live load

QoL= dead load

Qv = live load

S = target reliability index

(Eq. 6)

In the Monte Carlo simulation, resistance factors are obtained by trying different values
of resistance factors (¢rry) until the target probabilities of failure of 0.01 (corresponding to f =

2.33) and 0.001 (corresponding to S ~ 3.00) were achieved. In this study, total simulation size
was chosen to be 1,000,000.

For both the FOSM method and Monte Carlo simulation, the values presented in Table 5
were used for bias statistics for dead and live loads following recommendation by AASHTO

(Nowak 1999).

Table 5. Summary Statistics for Biases of Loads used in This Study

Dead-to-Live Load

Loads Ratio Load Factors () Mean of Bias (1) | COV of Bias
Live Load (LL) 5 ne =175 A =115 COV,L=0.2
Dead Load (DL) oL =1.25 A =1.05 COV.=0.1

Research Project 5-6788-01
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Tables 6 and 7 present LRFD resistance factors obtained both from the FOSM method
and Monte Carlo simulations for target reliability indices of 2.33 and 3.00, respectively. Note
that the 95% confidence intervals presented in the table are based on the FOSM resistance

factors.

Table 6. Resistance Factors for Total Capacity of Driven Piles in Soils (8 = 2.33)

g;tp:g::?:; ESf;?r(l:Sl\é € | Mean of | COV of ¢ @ Lower Upper

Criteria Size Bias Bias (Monte Carlo) (FOSM) 95% ClI 95% ClI

Davisson 26.8 1.224 0.532 0.44 0.41 0.30 0.53
5% 26.8 1.397 0.559 0.47 0.44 0.31 0.58
10% 26.8 1.600 0.620 0.47 0.44 0.30 0.59

Table 7. Resistance Factors for Total Capacity of Driven Piles in Soils (£ = 3.00)

g;ggl?:; ESf;?ﬁSIYe € | Mean of | COV of ¢ ) Lower Upper

Criteria Size Bias Bias (Monte Carlo) (FOSM) 95% ClI 95% ClI

Davisson 26.8 1.224 0.532 0.30 0.28 0.19 0.39
5% 26.8 1.397 0.559 0.32 0.30 0.20 0.42
10% 26.8 1.600 0.620 0.31 0.29 0.19 0.42

According to our analyses, resistance factors for g of 2.33 obtained from the Monte Carlo
simulations are 0.44, 0.47, and 0.47 for Davisson, 5%, and 10% criteria respectively. Similarly,
resistance factors for g of 3.00 are 0.30, 0.32, and 0.31 for Davisson, 5%, and 10% criteria
respectively. Although the mean bias is the greatest for 10% criterion, it does not necessarily
yield the greatest resistance factors because the COV is also the largest for 10% criterion.

3. Reliability Analyses and Develop Resistance Factor for Total Capacity of Drilled Shafts
in Soils

3.1 Determination of Ultimate Capacities Based on 5% and 10% Relative Settlement
Criteria

The dataset for the previous Research Project 0-6788 consisted of 41 drilled shafts.
Among the 41 drilled shafts, 29 of them were installed in soils and the remaining 11 were
installed in IGMs or rocks. In this Implementation Project 5-6788-01, reliability analyses were
done on the 29 load tests performed on drilled shafts installed in soil layers only. Among the 29
load tests in soils, 14 were conventional static top-down load tests, three were statnamic load
tests, and the remaining 12 tests were O-cell load tests. Three of the 14 conventional static load
tests were instrumented with strain gages, and separate measurements of shaft and base
capacities were made. The 12 O-cell tests also provided separate measurements of shaft and base
capacities.

Research Project 5-6788-01 Page 15



Among the 29 load tests in soils, 13, 9, and two were loaded beyond the Davisson’s
criterion, 5% relative settlement criterion, and 10% relative settlement criterion, respectively. For
the 27 load tests that did not reach a settlement of 10% of diameter at the pile head, the load-
settlement curves were extrapolated up to 10% pile diameter. In doing so, the research team used
the weighted hyperbolic fitting technique for top-down load tests and the t-z method for O-cell
tests.

Table 8 presents a summary of the ultimate capacities based on Davisson, 5%, and 10%
criteria of drilled shafts in soils (11 tests performed on drilled shafts installed in IGMs or rocks,
highlighted with grey color, were also included in Table 8 for the sake of completeness of the
dataset). Note that shaft and base capacities were also determined separately using 5% and 10%
relative settlement criteria for the instrumented tests. Ultimate capacity values in Columns 19,
22, and 25 represent measured capacities based on corresponding ultimate capacity criteria if
those criteria were met. Otherwise, these values were obtained from extrapolations.

Research Project 5-6788-01 Page 16
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3.2 Determination of Statistical Distribution of Bias of the Resistance and Development of
Resistance Factors

The measured (or extrapolated) ultimate capacities for each ultimate capacity criteria
were compared with the predicted capacities obtained using TCP raw blow counts (TCP Raw)
without hammer energy correction. Biases (4i = measured resistance/predicted resistance) for
each test were then computed for each ultimate capacity criterion. In order to compute the mean
and coefficient of variation (COV) of the biases, a weighting factor that ranged from 0 to 1 was
used to consider the uncertainties associated with the data quality, as done in the previous
Research Project 0-6788. The same procedures described in Section 2.2 of this report were used
to obtain the weighted mean and COV of the biases.

The weighted UMVUE summary statistics for the 29 load tests on drilled shafts in soils
are given in Table 9. As expected, the mean biases for 5% and 10% criteria are greater than that
for Davisson’s criterion. It was observed that the COVs for 5% and 10% criteria were also
greater than that for Davisson’s criterion.

Table 9. Summary Statistics for Biases of Resistances for Drilled Shafts in Soils

Ultimate Capacity Total number of load Effective sample Mean of Bias | COV of Bias
Criteria tests considered size
(Total sample size)
Davisson 29 26.4 1.027 0.393
5% 29 26.4 1.100 0.399
10% 29 26.4 1.219 0.443

As was done for the driven piles, resistance factors for drilled shafts in soils were
obtained following the FOSM method and the Monte Carlo simulation using the bias statistics
presented in Table 9. Tables 10 and 11 present LRFD resistance factors for total capacity of
drilled shafts in soils obtained both from the FOSM method and Monte Carlo simulations for
target reliability indices of 2.33 and 3.00, respectively. Note that the 95% confidence intervals
presented in the table are based on the FOSM resistance factors.

Table 10. Resistance Factors for Total Capacity of Drilled Shafts in Soils (£ = 2.33)

g;ggg’il:; EST?T?SI\‘; € Mean of | COV of ¢ ) Lower Upper
1 i 0, 0,
Criteria Size Bias Bias (Monte Carlo) (FOSM) 95% ClI 95% ClI
Davisson 26.4 1.027 0.393 0.51 0.46 0.36 0.57
5% 26.4 1.100 0.399 0.54 0.49 0.39 0.59
10% 26.4 1.219 0.443 0.54 0.49 0.39 0.60

Research Project 5-6788-01
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Table 11. Resistance Factors for Total Capacity of Drilled Shafts in Soils (£ = 3.00)

g;ggé?:; ESZ?]SSI\(/% € Mean of | COV of ¢ ¢ Lower Upper

Criteria Size Bias Bias (Monte Carlo) (FOSM) 95% ClI 95% CI

Davisson 26.4 1.027 0.393 0.38 0.34 0.26 0.44
5% 26.4 1.100 0.399 0.40 0.36 0.28 0.45
10% 26.4 1.219 0.443 0.39 0.36 0.27 0.45

According to our analyses, resistance factors for total capacity of drilled shafts installed
in soils with g of 2.33 obtained from Monte Carlo simulations are 0.51, 0.54, and 0.54 for
Davisson, 5%, and 10% criteria respectively. Similarly, resistance factors with £ of 3.00 are 0.38,
0.40, and 0.39 for Davisson, 5%, and 10% criteria respectively. Although the mean bias is the
greatest for 10% criterion, it does not necessarily yield the greatest resistance factors because the
COV is also the largest for 10% criterion.

In addition to the resistance factors for total capacity of drilled shafts in soils, resistance
factors for shaft and base capacities were also obtained using results from the 15 instrumented
load tests. Tables 12 and 13 present LRFD resistance factors for shaft capacity of drilled shafts in
soils obtained both from the FOSM method and Monte Carlo simulations for target reliability
indices of 2.33 and 3.00, respectively.

Table 12. Resistance Factors for Shaft Capacity of Drilled Shafts in Soils (£ = 2.33)

Total number of
Ultimate load tests Effective @ Lower | Upper
Capacity considered Sample o':‘/lg?gs o?gi\gs (Monte (FO(éM) 95% 95%
Criteria (Total sample Size Carlo) Cl Cl
size)

Davisson 15 13.6 0.968 | 0.717 0.23 0.22 0.11 0.37
5% 15 13.6 0.986 | 0.696 0.25 0.23 0.13 0.38
10% 15 13.6 1.029 0.66 0.28 0.26 0.15 0.4

Table 13. Resistance Factors for Shaft Capacity of Drilled Shafts in Soils (£ = 3.00)
Total number of

Ultimate load tests Effective ¢ Lower | Upper

Capacity considered Sample O'}A;?QS o?cB)i\gs (Monte FO¢SM 95% 95%

Criteria (Total sample Size Carlo) ( ) Cl Cl

size)

Davisson 15 13.6 0.968 | 0.717 0.14 0.14 0.06 0.25
5% 15 13.6 0.986 | 0.696 0.15 0.15 0.07 0.26
10% 15 13.6 1.029 0.66 0.18 0.17 0.09 0.28

Research Project 5-6788-01

Page 19



Tables 14 and 15 present resistance factors for base capacity of drilled shafts in soils
obtained both from FOSM method and Monte Carlo simulations for target reliability indices of
2.33 and 3.00, respectively.

Table 14. Resistance Factors for Base Capacity of Drilled Shafts in Soils (8= 2.33)

Total number of
Ultimate load tests Effective ¢ Lower | Upper
Capacity considered Sample ol:‘/lg?gs o?g?gs (Monte (FO¢SM) 95% 95%
Criteria (Total sample Size Carlo) Cl Cl
size)

Davisson 15 13.6 2.760 | 0.674 0.72 0.67 0.34 1.17
5% 15 13.6 3.099 | 0.681 0.79 0.75 0.36 1.37
10% 15 13.6 3.747 | 0.709 0.90 0.85 0.37 1.68

Table 15. Resistance Factors for Base Capacity of Drilled Shafts in Soils (5= 3.00)
Total number of

Ultimate load tests Effective ¢ Lower | Upper

Capacity considered Sample OI}AE?QS o?g?;s (Monte (FO%M) 95% 95%

Criteria (Total sample Size Carlo) Cl Cl

size)

Davisson 15 13.6 2.760 | 0.674 0.45 0.44 0.20 0.82
5% 15 13.6 3.099 | 0.681 0.50 0.48 0.20 0.98
10% 15 13.6 3.747 | 0.709 0.56 0.54 0.20 1.20

4. Summary, Conclusions and Recommendations

This research study has developed resistance factors for total capacity of driven piles and drilled
shafts in soils using 5% and 10% relative settlement criteria as ultimate capacity criteria. Among
the final dataset of 70 load tests, 59 tests (30 for driven piles and 29 for drilled shafts) performed
in soil layers only were considered in this study. With consideration to data quality, the effective
sample sizes are 26.8 and 26.4 for driven piles and drilled shafts in soils, respectively. For drilled
shafts, in addition to the resistance factors for total capacity, resistance factors for shaft and base
capacities were also obtained using results from the 15 instrumented load tests.

4.1 Resistance Factors for Driven Piles in Soils

Resistance factors for total capacity of driven piles in soils predicted with raw TCP blowcounts
are presented in Table 16 with target reliability index g of 2.33 and 3.0. The effective sample size
used in the analysis for driven piles in soils was 26.8.
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Table 16. Resistance Factors Obtained from Monte Carlo Simulations for Total Capacity of
Driven Piles in Soils

g;ggl?:; Effective Mean of COV of Resistance factor ¢ | Resistance factor ¢
Criteria Sample Size Bias Bias (B=2.33) (£ =3.00)
Davisson 26.8 1.224 0.532 0.44 0.30

5% 26.8 1.397 0.559 0.47 0.32

10% 26.8 1.600 0.620 0.47 0.31

Based on the size and scope of the dataset, literature review, and statistical analyses, the
following conclusions and recommendations are supported by this research:

e Although the mean bias is the greatest for 10% criterion, it does not necessarily yield the
greatest resistance factors because the COV is also the largest for 10% criterion.

e Considering wide spread use of Davisson criterion for driven piles in United States and
small increase in ¢ values when other criteria were used, resistance factors from Davisson
capacity are recommended for driven piles in soils.

e The resistance factors of 0.44 and 0.30 (with target reliability index of 2.33 and 3.0,
respectively) for total capacity of driven piles in soils using raw TCP blowcounts are
suitable for implementation for small projects.

e For large projects, we recommend consideration of determining ultimate capacity from
static or dynamic load tests in accordance with AASHTO policy (AASHTO 2012) which

will yield higher resistance factors.

4.2 Resistance Factors for Total Capacity of Drilled Shafts in Soils

Resistance factors for total capacity of drilled shafts in soils predicted with raw TCP blowcounts
are presented in Table 17 with target reliability index f of 2.33 and 3.0. The effective sample size
used in the analysis for driven piles in soils was 26.4.

Table 17. Resistance Factors Obtained from Monte Carlo Simulations for Total Capacity of
Drilled Shafts in Soils

Ultimate

Effective

Capacity Sample Mg?gsof COV of Bias Resm(gr_]cze ;a;;tor 9 Re3|?;1rlc§ (f)%(;tor ¢
Criteria Size T v
Davisson 26.4 1.027 0.393 0.51 0.38

5% 26.4 1.100 0.399 0.54 0.40

10% 26.4 1.219 0.443 0.54 0.39

Based on the size and scope of the dataset, literature review, and statistical analyses, the
following conclusions and recommendations are supported by this research:

e Although the mean bias is the greatest for 10% criterion, it does not necessarily yield the
greatest resistance factors because the COV is also the largest for 10% criterion.
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e Considering that FHWA suggests 5% criterion for drilled shafts (O’Neil and Reese 1999)
and 5% vyields the largest ¢ value among the three criteria considered in this study,
resistance factors from 5% criterion are recommended for drilled shafts in soils.

e The resistance factors of 0.54 and 0.40 (with target reliability index of 2.33 and 3.0,
respectively) for total capacity of drilled shafts in soils using raw TCP blowcounts are
suitable for implementation.

e For large projects, we recommend consideration of determining ultimate capacity from
static load tests in accordance with AASHTO policy (AASHTO 2012) which will yield
higher resistance factors.

4.3 Resistance Factors for Shaft and Base Capacities of Drilled Shafts in Soils

Resistance factors for shaft and base capacities of drilled shafts in soils predicted with
raw TCP blowcounts are presented in Tables 18 and 19, respectively, with target reliability index
p of 2.33 and 3.0. The effective sample size used in the analysis for driven piles in soils was 13.6.

Table 18. Resistance Factors Obtained from Monte Carlo Simulations for Shaft Capacity of
Drilled Shafts in Soils

Ultimate Effective . .
Capacity Sample Mg?gsof COV of Bias Remzt;rlc; ;a;tor $ Re5|§.’t‘?rlc§ B%(;tor 4
Criteria Size T s
Davisson 13.6 0.968 0.717 0.23 0.14

5% 13.6 0.986 0.696 0.25 0.15

10% 13.6 1.029 0.660 0.28 0.18

Table 19. Resistance Factors Obtained from Monte Carlo Simulations for Base Capacity of
Drilled Shafts in Soils

Ultimate Effective . .
Capacity Sample M;?ZSO]C COV of Bias Remiglrlc; ;asgtor 4 Reazt;rlcg B%C)tor 4
Criteria Size oo e
Davisson 13.6 2.760 0.674 0.72 0.45

5% 13.6 3.099 0.681 0.79 0.50

10% 13.6 3.747 0.709 0.90 0.56

Based on the size and scope of the dataset, literature review, and statistical analyses, the
following conclusions and recommendations are supported by this research:

e Resistance factors differentiated for shaft and base capacity and based on raw TCP
blowcounts for drilled shafts in soils are variable:
o Shaft: 0.25 and 0.15 (with target reliability index of 2.33 and 3.0, respectively)
0 Base: 0.79 and 0.50 (with target reliability index of 2.33 and 3.0, respectively)
e For small projects where differentiation between base and shaft resistances is not critical,
the resistance factors for shaft and base resistance are suitable for implementation.
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e For large projects where it is critical that base and shaft resistance be differentiated, we
recommend consideration of determining ultimate capacity from static load tests in
accordance with AASHTO policy (AASHTO 2012) which will yield higher resistance

factors.
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